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In this talk:

I electric currents in vacuum,
I only surface regions are treated,
I all quantities in their matrix form, i.e. operators → matrices, functions → vectors,
I small electrical size is considered, i.e. ka < 1,
I time-harmonic quantities, i.e., A (r, t) =

√
2Re {A (r) exp (jωt)} are considered.
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Quality factor Q

Minimization of quality factor Q

Quality factor Q . . .

I is (generally) proportional to FBW,

I therefore, of interest for ESA (ka < 1).

Fundamental bounds of quality factor Q

I are known for several canonical bodies,

I many interesting works recently appeared1,

• still, they are unknown for arbitrarily shaped bodies.

1M. Gustafsson, C. Sohl, and G. Kristensson, “Physical limitations on antennas of arbitrary shape”,
Proc. of Royal Soc. A, vol. 463, pp. 2589–2607, 2007. doi: 10.1098/rspa.2007.1893

M. Gustafsson, D. Tayli, C. Ehrenborg, et al., “Tutorial on antenna current optimization using MATLAB
and CVX”, , FERMAT, 2015
O. S. Kim, “Lower bounds on Q for finite size antennas of arbitrary shape”, IEEE Trans. Antennas
Propag., vol. 64, no. 1, pp. 146–154, 2016. doi: 10.1109/TAP.2015.2499764
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Quality factor Q

Minimization of quality factor Q

Current Iopt minimizing quality factor Q of a given shape Ω:

Q (Iopt) = min
I
{Q (I)} (1)

How to find Iopt for a given Ω?

Procedure followed in this talk2:

STEP 1 definition of quality factor Q,

STEP 2 definition of stored energy W̃sto,

STEP 3 formulation of optimization task related to (1),

STEP 4 representation of Iopt in an appropriate basis,

STEP 5 optimal composition of modal currents forming Iopt.
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C̆apek, Jeĺınek – AP-S/URSI 2016 Optimal Composition of CMs For Minimal Q 4 / 20



Quality factor Q

Minimization of quality factor Q

Current Iopt minimizing quality factor Q of a given shape Ω:

Q (Iopt) = min
I
{Q (I)} (1)

How to find Iopt for a given Ω?

Procedure followed in this talk2:

STEP 1 definition of quality factor Q,

STEP 2 definition of stored energy W̃sto,

STEP 3 formulation of optimization task related to (1),

STEP 4 representation of Iopt in an appropriate basis,

STEP 5 optimal composition of modal currents forming Iopt.
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Quality factor Q

Step 1+2: Definition of Q and W̃sto

Quality factor Q defined by parts as

Q (I) = QU (I) +Qext (I) (2)

using stored energy3

QU (I) =
ωW̃sto

Pr
=

IHX′I

2IHRI
=

IHω
∂X

∂ω
I

2IHRI
, (3)

and tuning

Qext (I) =

∣∣IHXI
∣∣

2IHRI
. (4)

J ≈
∑
n

Infn, Z = R+ jX

3M. Cismasu and M. Gustafsson, “Antenna bandwidth optimization with single freuquency
simulation”, IEEE Trans. Antennas Propag., vol. 62, no. 3, pp. 1304–1311, 2014, R. F. Harrington and
J. R. Mautz, “Control of radar scattering by reactive loading”, IEEE Trans. Antennas Propag., vol. 20,
no. 4, pp. 446–454, 1972. doi: 10.1109/TAP.1972.1140234, G. A. E. Vandenbosch, “Reactive energies,
impedance, and Q factor of radiating structures”, IEEE Trans. Antennas Propag., vol. 58, no. 4,
pp. 1112–1127, 2010. doi: 10.1109/TAP.2010.2041166.
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Minimization of quality factor Q

Step 3: Formulation of the problem

Find Iopt so that

minimize quality factor Q, (5)

subject to W̃m − W̃e = 0. (6)

Searching for self-resonant current Iopt fulfilling (5)–(6)
is not a convex problem.
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Minimization of quality factor Q

Step 4: Representation of Iopt
Current decomposition

Let us decompose the current into (yet unknown) modes such that

I =

N∑
n=1

αnIn. (7)

Then, the quality factor Q reads

Q (I) =

V∑
v=1

U∑
u=1

α∗uαvI
H
uX
′Iv +

∣∣∣∣ V∑
v=1

U∑
u=1

α∗uαvI
H
uXIv

∣∣∣∣
2

V∑
v=1

U∑
u=1

α∗uαvIHuRIv

. (8)

Analytical solution can easily be found if

IHuRIv = δuv, (9)

IHuXIv = Auvδuv, (10)

IHuX
′Iv = Buvδuv. (11)
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Minimization of quality factor Q

Step 4: Representation of Iopt
Optimal current

Normalizing α1 = 1, we get the result4 if

I tuning is represented by localized current (i.e. external tuning
element) as

Q (Iopt) =
IH1 X

′I1 +
∣∣IH1 XI1

∣∣
2

, (12)

I tuning is represented by low-order modal current as

Q (Iopt) =
IH1 X

′I1 + |αopt|2 IH2 X′I2
2
(

1 + |αopt|2
) . (13)

Both options are discussed in the following figure. . .

4M. Capek and L. Jelinek, “Optimal composition of modal currents for minimal quality factor Q”, ,
2016, arXiv:1602.04808
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Minimization of quality factor Q

Localized and distributive tunning

QU(I)

0
wWm
wWe

 Pr

QU(I)+Qext

0
wWm
wWe

 Pr

max{wWe, wWm} 

30

15

20

30

20

30

Tuning by external lumped element (localized current).

Q (Iopt)

0
wWm
wWe

 Pr wWm
wWe

 Pr wWm
wWe

 Pr

current #1
current #2

+ =

30

15

20

5

20

35
32.5 32.5

30

Tuning by distributive current.
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Minimization of quality factor Q

Step 5: Optimal composition to form Iopt

To diagonalize R, X and X′ we can choose:

XIu = λuRIu,

(14)

X′Iu = ξuRIu, (15)

XIu = χuX
′Iu.

(16)

I All GEPs involve only two of the three operators5 (R, X, X′).

I Using characteristic modes, defined by (14), we get6 for Iopt

αopt =

√
−λ1
λ2

ejϕ, ϕ ∈ [−π, π] , λ2 6= 0. (17)

5Modal currents have cross-terms with the non-diagonalized operator, e.g., for (14) IHuX′Iv 6= 0.
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Results: Quality factor Q

A spherical shell
Minimization of quality factor Q

I Special case for which R, X and X′ are all diagonalizable.

Optimal ratio between dominant (TM) and tuning (TE) modes:

αopt =

√
−λTM10

λTE10
ejϕ =

√√√√√√√−
1− kay0 (ka)

y1 (ka)

1− ka j0 (ka)

j1 (ka)

ejϕ.

I arbitrary ϕ for minimal quality factor Q,
I specified ϕ for maximal G/Q (will be shown later).

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1
ka

0.82

J1 (TM10)

J2 (TE10)

½aopt½

Q (Iopt) / Q (I1)
0.58

0.66

0.71

J
1,2 depicted at ka = 1/2

Q
 (I

op
t)

 /
 Q

 (I
1)

, 
 a

op
t

Normalized quality factor Q and reduction rate αopt for a spherical shell.

C̆apek, Jeĺınek – AP-S/URSI 2016 Optimal Composition of CMs For Minimal Q 11 / 20



Results: Quality factor Q

A spherical shell
Minimization of quality factor Q

I Special case for which R, X and X′ are all diagonalizable.

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1
ka

0.82

J1 (TM10)

J2 (TE10)

½aopt½

Q (Iopt) / Q (I1)
0.58

0.66

0.71

J
1,2 depicted at ka = 1/2

Q
 (I

op
t)

 /
 Q

 (I
1)

, 
 a

op
t

Normalized quality factor Q and reduction rate αopt for a spherical shell.
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Results: Quality factor Q

A spherical shell
Comparison with fundamental bounds

0 0.2 0.4 0.6 0.8 1
ka

J
opt depicted at ka = 1/2

Q
 (I

op
t)
/Q

C
huT
M

0.6

1.2

Jopt1

Ñ× Jopt1,2

0.8

1.0

Jopt2

radiation energy
inside sphere

QCR/QChu  

(QRY+ka)/QChu
TM

TM

QThal/QChu 
TM

Q (Iopt)/QChu

QRY/QChu 
TM

TM

Comparison of various7 “minimal” quality factors Q of a spherical shell normalized to QTM
Chu.

7QRY – Rhodes (1976), Yaghjian and Best (2005), Vandenbosch (2010), Gustafsson et al. (2013); QCR
– Collin and Rothschild (1964); QThal – Thal (2011); Q

(
Iopt

)
– this work.
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Results: Quality factor Q

A rectangular plate

I The cross-terms IHuX
′Iv are negligible (for all calculated examples).

0 0.5 1 1.5
ka

0.2

0.4

0.6

0.8

1.0

0.1

0.3

0.5

0.7

0.9
I

1 self-resonant at ka @ p/2

 J1+aoptJ2
½aopt½

Q (Iopt) / Q (I1)

J1 J2

Q
 (I

op
t)

 /
 Q

 (I
1)

, 
 a

op
t

J
1,2 depicted at ka = 1/2

Normalized quality factor Q and reduction rate αopt for L× L/2 rectangular plate.
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Results: Sub-optimality of G/Q

What about G/Q limits for Iopt?

I Current Iopt found in this work yields (sub-)optimal G/Q as well.

0.2 0.4 0.6 0.8 1 1.2 1.4
10-4

10-2

100

ka

D
t 
/Q

 (I
op

t)
=

G
t 
/Q

 (I
op

t)
region of values unfeasible
with purely electrical 
currents (J, r

e)
W

x

z

W y

rect. (L×L/10)
rect. (L×L/2)

sphere (a)

circle (a)
rect. (L×L/10)
rect. (L×L/2)

sphere (a)

W

W

a

W

G/Qopt ratios for different canonical shapes8.

8Yellow asterisks – Gustafsson et al. (2007), solid blue lines – Gustafsson et al. (2015).

C̆apek, Jeĺınek – AP-S/URSI 2016 Optimal Composition of CMs For Minimal Q 14 / 20



Results: Sub-optimality of G/Q

Ω (ka = 0.5)
Q(Iopt)

QTM
Chu

Q(Iopt)
Q(I1)

Gy

Q(Iopt)
S

S<=

3.566 0.839 0.0352 1.000

3.613 0.840 0.0349 0.689

3.658 0.842 0.0347 0.667

3.691 0.839 0.0343 0.533

4.398 0.995 0.0285 0.644

4.670 1.000 0.0283 0.378

9
9G. A. E. Vandenbosch, “Explicit relation between volume and lower bound for Q for small dipole

topologies”, IEEE Trans. Antennas Propag., vol. 60, no. 2, pp. 1147–1152, 2012. doi:
10.1109/TAP.2011.2173127
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Excitation of optimal currents

Optimal currents × optimal antennas

Q (Iopt) /Q
TM
Chu = 4.85

Optimal current Iopt.

Q/QTM
Chu = 6.05

Near-optimal antenna10.

10S. R. Best, “Electrically small resonant planar antennas”, IEEE Antennas Propag. Magazine, vol. 57,
no. 3, pp. 38–47, 2015. doi: 10.1109/MAP.2015.2437271
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Excitation of optimal currents

Excitation: NP-hard problem?

Finding the current Iopt is only a (small) part of a synthesis since it is
incompatible with any realistic feeding.

I Proper feeding position(s) must be determined.

I Shape Ω must be modified.

How much DOF we have?

W

N (unknowns) 28 52 120 ∞
possibilities

5.24 · 1029 1.39 · 1068 1.15 · 10199 ∞

unique solutions

2.68 · 108 4.50 · 1015 1.33 · 1036 ∞

Complexity of geometrical optimization for given voltage gap (red line) and N unknowns.

Antenna synthesis – how far can we go?

I On the present, only the heuristic optimization. . .
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incompatible with any realistic feeding.
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Excitation of optimal currents

Excitation: What is Iopt good for?

Excitation placement is ad hoc.

Computational time: 12116 s

Result of heuristic structural optimization using
MOGA NSGAII (Qext, QU) from AToM-FOPS.

Depicted currents I are completely different from Iopt!

I Optimal currents are incompatible with realistic (fed) scenarios.
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Excitation: What is Iopt good for?

Excitation placement is ad hoc.

Computational time: 12116 s

Result of heuristic structural optimization using
MOGA NSGAII (Qext, QU) from AToM-FOPS.

Computational time: 1155 s

Result of deterministic in-house algorithm
removing in each iteration the “worse” edge.

Depicted currents I are completely different from Iopt!

I Optimal currents are incompatible with realistic (fed) scenarios.
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Q (I) /QTM
Chu = 7.23

Resulting sub-optimal current approaching
minimal value of quality factor Q.

Q (I) /QTM
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Resulting current given by in-house
deterministic algorithm.
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Conclusion

Conclusion

Optimal current Iopt approaching lower bounds of quality
factor Q can easily be obtained assuming:

I small ka (negligible cross-terms),

I electrical currents,

I surface geometries.

(Sub-)optimal currents for G, G/Q, ηrad etc. can be found
if proper GEP (modal decomposition) is utilized.
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I surface geometries.

(Sub-)optimal currents for G, G/Q, ηrad etc. can be found
if proper GEP (modal decomposition) is utilized.

Similar work of the same topic recently published11.
Talk relevant to this presentation:

I L. Jelinek and M. Capek: Optimal Currents in the Characteristic
Modes Basis12, session MO–A1.4P, Mo (14:20).

11J. Chalas, K. Sertel, and J. L. Volakis, “Computation of the Q limits for arbitrary-shaped antennas
using characteristic modes”, IEEE Trans. Antennas Propag. (Early Access), vol. PP, pp. 1–11, 2016. doi:
10.1109/tap.2016.2557844

12L. Jelinek and M. Capek, “Optimal currents on arbitrarily shaped surfaces”, , 2016, arXiv:1602.05520
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Conclusion

Conclusion

Optimal current Iopt approaching lower bounds of quality
factor Q can easily be obtained assuming:

I small ka (negligible cross-terms),

I electrical currents,

I surface geometries.

(Sub-)optimal currents for G, G/Q, ηrad etc. can be found
if proper GEP (modal decomposition) is utilized.

Future work

I Excitation placement, number of feeders.

I Shape modifications.

I Deeper understanding of the relationship between
optimal currents and optimal antennas.
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Questions?

For complete PDF presentation see capek.elmag.org

Miloslav Čapek
miloslav.capek@fel.cvut.cz

27. 6. 2016, v1.0
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