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This talk concerns:

I electric currents in vacuum (generalization is, however,
straightforward),

I time-harmonic quantities, i.e., A (r, t) = Re {A (r) exp (jωt)}.
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Characteristic Modes

Characteristic Mode Decomposition

Generalized eigenvalue problem1

XIn = λnRIn,

Z = R + jX ∈ CN×N is impedance matrix, In ∈ RN×1 are expansion coefficients.

Benefits

I provide physical insight

I formalization of what antenna
designers know and understand

I excellent entire-domain basis

but. . .

I hyped and sometimes misused (since
used for everything)

I suffers from numerical problems

I incompatible with realistic feeding

1R. F. Harrington and J. R. Mautz, “Computation of characteristic modes for conducting bodies”, IEEE Trans.
Antennas Propag., vol. 19, no. 5, pp. 629–639, 1971. doi: 10.1109/TAP.1971.1139990
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Characteristic Modes

Benchmark of CM Solvers: Spherical Shell2, ka = 1/2
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2M. Capek, V. Losenicky, L. Jelinek, et al., “Validating the characteristic modes solvers”, IEEE Trans. Antennas
Propag., vol. 65, no. 8, pp. 4134–4145, 2017. doi: 10.1109/TAP.2017.2708094
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Characteristic Modes

Cause of Limited Number of Modes

Previous benchmark generated some important questions:

I How many modes can, in principle, be found?

I Is there a way how to increase their number?

I Is there a way how to accelerate solution if only few
modes are needed?

Problem is predominantly caused by numerical dynamics
of the R matrix (naive interpretation: only a few modes

radiate well. You will see later. . . ).
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Definition of Matrix S

Electric Field Integral Equation (EFIE)

EFIE for PEC bodies as the core of underlying MoM formulation:

n̂×E (r2) = jkZ0n̂×
∫

Ω

G (r1, r2) · J (r1) dS1, (1)

with dyadic Green function defined as

G (r1, r2) =

(
1 +

1

k2
∇∇

)
e−jk|r1−r2|

4π |r1 − r2|
. (2)

The impedance matrix Z reads

Zpq = jkZ0

∫

Ω

∫

Ω

ψp (r1) ·G (r1, r2) ·ψq (r2) dS1 dS2. (3)
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Definition of Matrix S

Spherical Wave Expansion of Dyadic Green Function

Spherical wave expansion of dyadic Green function reads3

G (r1, r2) = −jk
∑

α

u(1)
α (kr<) u(4)

α (kr>). (4)

Impedance matrix Z with spherical wave expansion substituted

Zpq = k2Z0

∑

α

∫

Ω

∫

Ω

ψp (r1) · u(1)
α (kr<) u(4)

α (kr>) · ψq (r2) dS1 dS2. (5)

can be used for reformulation of matrix R since u
(1)
α (kr) = Re{u(4)

α (kr)} as

3G. Kristensson, Scattering of electromagnetic waves by obstacles. Edison, NJ: SciTech Publishing, an imprint of the IET,
2016
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Definition of Matrix S

Definition of Projection Matrix S

Resistance matrix R is expressed as a product of two identical rectangular
matrices:

Rpq =
∑

α


k
√
Z0

∫

Ω

ψp (r1) · u(1)
α (kr1) dS1




k
√
Z0

∫

Ω

u(1)
α (kr2) · ψq (r2) dS2




Definition4 of the matrix S ∈ RNα×N

Sαp = k
√
Z0

∫

Ω

ψp (r) · u(1)
α (kr) dS, (6)

and its relation to the resistance matrix

R = STS. (7)

R = STSST

S

NNα

N

Nα
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4D. Tayli, M. Capek, L. Akrou, et al., “Accurate and efficient evaluation of characteristic modes”, , 2017, submitted,
arXiv:1709.09976. [Online]. Available: https://arxiv.org/abs/1709.09976
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Definition of Matrix S

Properties of Matrix S, Part #1

I Matrix S is real-valued,
rectangular, low-rank

Nα = 2L (L+ 2) , (8)

L = dka+ 7
3
√
ka+ 2e. (9)

I Matrix STS does not contain
any negative eigenvalue
higher than numerical noise.

I Matrix S represents
projection between RWGs
and spherical waves, i.e.,

R = STS, (10)

Rsph = SST. (11)

100 200 300 400 500
10−21

10−17

10−13

10−9

10−5

10−1

double

precision

α: spherical waves

α

√
S
α
S
T α

spherical shell, Nα = 510, N = 900
rectangular plate, Nα = 510, N = 721
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Definition of Matrix S

Properties of Matrix S, Part #2

Radiated power can be calculated as

Prad =
1

2Z0

∫

S2

|F (r̂)|2 dS ≈ 1

2
IHRI =

1

2
|SI|2 =

1

2

∑

α

|fα|2 (12)

with

F (r̂) =
1

k

∑

α

jl−τ+2fαYα (r̂) , (13)

where Yα (r̂) are the real-valued spherical vector harmonics.

Example Comp. times in IDA (s)

Nα N R S R = STS

spherical shell 880 750 0.09 0.009 0.011
spherical shell 880 3330 1.78 0.039 0.083
helicopter 880 18898 54.50 0.236 1.660
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Modification of Generalized Eigenvalue Problem

CMs Using SVD of matrix S and GEP Partitioning

Singular value decomposition (SVD) of matrix S

S = UΛVH, (14)

substituted into CM definition gives

(
VHXV

) (
VHIn

)
= λn

(
ΛHΛ

) (
VHIn

)
−→ X̃Ĩn = λnR̃Ĩn, (15)

Partitioning

X̃Ĩ =

(
X̃11 X̃12

X̃21 X̃22

)(
Ĩ1n
Ĩ2n

)
=

(
λ1nR̃11Ĩ1n

0

)
(16)

and reducing to Schur complement yields the final GEP formulation

(
X̃11 − X̃12X̃

−1
22 X̃21

)
Ĩ1n = λ1nR̃11Ĩ1n. (17)
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Modification of Generalized Eigenvalue Problem

Properties of the Decomposition:

Characteristic modes are constructed as

Ĩn =

(
Ĩ1n

−X̃−122 X̃21Ĩ1n

)
, (18)

radiated power is implicitly normalized by ΛHΛ matrix in (15)

ĨHn R̃Ĩm = δnm. (19)

Properties4:

I numerical dynamics doubled thanks to the SVD and partitioning,

I number of used spherical modes controls the number of CMs,

I for Nα � N (always fulfilled in ESA regime) remarkable speed-up.

4D. Tayli, M. Capek, L. Akrou, et al., “Accurate and efficient evaluation of characteristic modes”, , 2017, submitted,
arXiv:1709.09976. [Online]. Available: https://arxiv.org/abs/1709.09976
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Ĩ1n

−X̃−122 X̃21Ĩ1n
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ĨHn R̃Ĩm = δnm. (19)

Properties4:

I numerical dynamics doubled thanks to the SVD and partitioning,

I number of used spherical modes controls the number of CMs,

I for Nα � N (always fulfilled in ESA regime) remarkable speed-up.

4D. Tayli, M. Capek, L. Akrou, et al., “Accurate and efficient evaluation of characteristic modes”, , 2017, submitted,
arXiv:1709.09976. [Online]. Available: https://arxiv.org/abs/1709.09976

Capek, M., et al. Accurate Evaluation of Characteristic Modes 12 / 20

https://arxiv.org/abs/1709.09976


Decomposition With Matrix S

Spherical Shell
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TM/TE mode order
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n
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TM modes TE modes

exact
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Decomposition With Matrix S

Rectangular Plate

100 modes were calculated (eigs)

I (X, R) 0.7 s (29)

I (X, R) + Advanpix: 1324 s

I (X̃, R̃) 0.5 s (37)

(If matrix S is reduced, calculation
further accelerated.)
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Decomposition With Matrix S

Rectangular Plate – Higher-order Modes

Two high-order modes of rectangular
plate:

I left: inductive, n = 17,
λ17 = 2.461 · 1017,

I right: capacitive, n = 77,
λ77 = −1.947 · 1024.

Such high-order modes are not
needed in practice (except tracking).

I However, accuracy can be
interchanged for comp. speed.
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Decomposition With Matrix S

Acceleration of the CMs Decomposition

If double precision is enough, however, computational speed is required:

XIn = λnS
TSIn (20)

SIn = λnSX−1STSIn −→ X̂În = ξnÎn (21)

with X̂ = SX−1ST, În = SI, and ξn = 1/λn.

Properties:

I solved in basis of spherical waves (̂In = SI),

I standard (not generalized) eigenvalue problem,

I solution of typically small Nα ×Nα eigenvalue problem (extreme speed-up),

I all modes, well-represented in the spherical basis, are found,

I eig shall be used instead of eigs in MATLAB.
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I solution of typically small Nα ×Nα eigenvalue problem (extreme speed-up),

I all modes, well-represented in the spherical basis, are found,

I eig shall be used instead of eigs in MATLAB.
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Decomposition With Matrix S

Acceleration of the CMs Decomposition – Comparison

Example Comp. times (s)

CMs Nα N (R, X) (R̃, X̃) (SX−1ST)

rectangular plate 100 510 655 0.7 0.8 0.5 (510 modes)

spherical shell 300 880 3330 29 6.7 2.6 (880 modes)

helicopter 25 880 18898 149 170 47 (880 modes)

helicopter 100 880 18898 473 173 47 (880 modes)

Windows Server 2012, 2×XEON E5-2665 @ 2.4 GHZ, 72 GB RAM

I (R̃, X̃) gives significantly more modes accurately and is typically faster.

I (SX−1ST) gives slightly more modes accurately and is significantly faster.

I (SX−1ST) finds all modes available from a given set of spherical harmonics.

I (SX−1ST) decomposition is excellent for high ka with large DOFs N .
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Other Applications

Restriction to TM/TE Modes

Matrix STM/TE = S (i, :) contains TE and TM modes in separate rows.
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Concluding Remarks

Conclusions

I New matrix operator based on MoM
formalism,

I matrix S has controllable and
predictable behavior and numerically
neat properties,

I matrix S has many applications (some of
them probably yet unknown),

I if X is not needed, matrix S should be
preferred over R,

I with respect to the (characteristic)
modes, the matrix S is, in certain sense,
a return to their scattering origin5.

Dominant characteristic mode of helicopter model
discretized into 18989 RWGs, ka = 1/2.

5C. G. Montgomery, R. H. Dicke, and E. M. Purcell, Principles of microwave circuits. New York, United States:
McGraw-Hill, 1948
R. J. Garbacz, “A generalized expansion for radiated and scattered fields”, PhD thesis, Department of Electrical
Engineering, Ohio State University, 1968
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Questions?

For a complete PDF presentation see capek.elmag.org

Miloslav Čapek
miloslav.capek@fel.cvut.cz

12. 04. 2018, v1.0
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