Accurate Evaluation of Characteristic Modes

Miloslav Capek ${ }^{1}$ Doruk Tayli ${ }^{2}$ Lamye Akrou ${ }^{3}$ Vit Losenicky ${ }^{1}$ Lukas Jelinek ${ }^{1}$ Mats Gustafsson ${ }^{2}$
${ }^{1}$ Department of Electromagnetic Field
Czech Technical University in Prague, Czech Republic miloslav.capek@fel.cvut.cz
${ }^{2}$ Department of Electrical and Information Technology,
Lund University, Sweden
${ }^{3}$ Department of Electricaland Computer Engineering, University of Coimbra, Portugal
The 12th European Conference on Antennas and Propagation London, United Kingdom
April 12, 2018

Outline

(1) Characteristic Modes
(2) Definition of Matrix \mathbf{S}
(3) Modification of Generalized Eigenvalue Problem
(4) Decomposition With Matrix \mathbf{S}
(5) Other Applications
(6) Concluding Remarks

$\mathcal{J}_{2}(\boldsymbol{r}, t)$

This talk concerns:

- electric currents in vacuum (generalization is, however, straightforward),
- time-harmonic quantities, i.e., $\boldsymbol{\mathcal { A }}(\boldsymbol{r}, t)=\operatorname{Re}\{\boldsymbol{A}(\boldsymbol{r}) \exp (\mathrm{j} \omega t)\}$.

Characteristic Mode Decomposition

Generalized eigenvalue problem ${ }^{1}$

$$
\mathbf{X} \mathbf{I}_{n}=\lambda_{n} \mathbf{R} \mathbf{I}_{n}
$$

$\mathbf{Z}=\mathbf{R}+\mathrm{j} \mathbf{X} \in \mathbb{C}^{N \times N}$ is impedance matrix, $\mathbf{I}_{n} \in \mathbb{R}^{N \times 1}$ are expansion coefficients.

[^0]
Characteristic Mode Decomposition

Generalized eigenvalue problem ${ }^{1}$

$$
\mathbf{X} \mathbf{I}_{n}=\lambda_{n} \mathbf{R} \mathbf{I}_{n}
$$

$\mathbf{Z}=\mathbf{R}+\mathrm{j} \mathbf{X} \in \mathbb{C}^{N \times N}$ is impedance matrix, $\mathbf{I}_{n} \in \mathbb{R}^{N \times 1}$ are expansion coefficients.

Benefits

- provide physical insight
- formalization of what antenna designers know and understand
- excellent entire-domain basis

[^1]
Characteristic Mode Decomposition

Generalized eigenvalue problem ${ }^{1}$

$$
\mathbf{X} \mathbf{I}_{n}=\lambda_{n} \mathbf{R} \mathbf{I}_{n}
$$

$\mathbf{Z}=\mathbf{R}+\mathrm{j} \mathbf{X} \in \mathbb{C}^{N \times N}$ is impedance matrix, $\mathbf{I}_{n} \in \mathbb{R}^{N \times 1}$ are expansion coefficients.

Benefits

- provide physical insight
- formalization of what antenna designers know and understand
excellent entire-domain basis
but...
- hyped and sometimes misused (since used for everything)
- suffers from numerical problems
- incompatible with realistic feeding

[^2]
Characteristic Mode Decomposition

Generalized eigenvalue problem ${ }^{1}$

$$
\mathbf{X} \mathbf{I}_{n}=\lambda_{n} \mathbf{R} \mathbf{I}_{n}
$$

$\mathbf{Z}=\mathbf{R}+\mathrm{j} \mathbf{X} \in \mathbb{C}^{N \times N}$ is impedance matrix, $\mathbf{I}_{n} \in \mathbb{R}^{N \times 1}$ are expansion coefficients.

Benefits

- provide physical insight
- formalization of what antenna designers know and understand
excellent entire-domain basis
but...
- hyped and sometimes misused (since used for everything)
- suffers from numerical problems
- incompatible with realistic feeding

[^3]
Benchmark of CM Solvers: Spherical Shell ${ }^{2}$, $k a=1 / 2$

[^4]
Cause of Limited Number of Modes

Previous benchmark generated some important questions:

- How many modes can, in principle, be found?
- Is there a way how to increase their number?
- Is there a way how to accelerate solution if only few modes are needed?

Cause of Limited Number of Modes

Previous benchmark generated some important questions:

- How many modes can, in principle, be found?
- Is there a way how to increase their number?
- Is there a way how to accelerate solution if only few modes are needed?

Problem is predominantly caused by numerical dynamics of the \mathbf{R} matrix (naive interpretation: only a few modes radiate well. You will see later...).

Electric Field Integral Equation (EFIE)

EFIE for PEC bodies as the core of underlying MoM formulation:

$$
\begin{equation*}
\hat{\boldsymbol{n}} \times \boldsymbol{E}\left(\boldsymbol{r}_{2}\right)=\mathrm{j} k Z_{0} \hat{\boldsymbol{n}} \times \int_{\Omega} \mathbf{G}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right) \cdot \boldsymbol{J}\left(\boldsymbol{r}_{1}\right) \mathrm{d} S_{1}, \tag{1}
\end{equation*}
$$

with dyadic Green function defined as

$$
\begin{equation*}
\mathbf{G}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=\left(\mathbf{1}+\frac{1}{k^{2}} \nabla \nabla\right) \frac{\mathrm{e}^{-\mathrm{j} k\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right|}}{4 \pi\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right|} \tag{2}
\end{equation*}
$$

Electric Field Integral Equation (EFIE)

EFIE for PEC bodies as the core of underlying MoM formulation:

$$
\begin{equation*}
\hat{\boldsymbol{n}} \times \boldsymbol{E}\left(\boldsymbol{r}_{2}\right)=\mathrm{j} k Z_{0} \hat{\boldsymbol{n}} \times \int_{\Omega} \mathbf{G}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right) \cdot \boldsymbol{J}\left(\boldsymbol{r}_{1}\right) \mathrm{d} S_{1} \tag{1}
\end{equation*}
$$

with dyadic Green function defined as

$$
\begin{equation*}
\mathbf{G}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=\left(\mathbf{1}+\frac{1}{k^{2}} \nabla \nabla\right) \frac{\mathrm{e}^{-\mathrm{j} k\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right|}}{4 \pi\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right|} \tag{2}
\end{equation*}
$$

The impedance matrix \mathbf{Z} reads

$$
\begin{equation*}
Z_{p q}=\mathrm{j} k Z_{0} \int_{\Omega} \int_{\Omega} \boldsymbol{\psi}_{p}\left(\boldsymbol{r}_{1}\right) \cdot \mathbf{G}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right) \cdot \boldsymbol{\psi}_{q}\left(\boldsymbol{r}_{2}\right) \mathrm{d} S_{1} \mathrm{~d} S_{2} \tag{3}
\end{equation*}
$$

Spherical Wave Expansion of Dyadic Green Function

Spherical wave expansion of dyadic Green function reads ${ }^{3}$

$$
\begin{equation*}
\mathbf{G}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=-\mathrm{j} k \sum_{\alpha} \mathbf{u}_{\alpha}^{(1)}\left(k \boldsymbol{r}_{<}\right) \mathbf{u}_{\alpha}^{(4)}\left(k \boldsymbol{r}_{>}\right) . \tag{4}
\end{equation*}
$$

[^5]
Spherical Wave Expansion of Dyadic Green Function

Spherical wave expansion of dyadic Green function reads ${ }^{3}$

$$
\begin{equation*}
\mathbf{G}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=-\mathrm{j} k \sum_{\alpha} \mathbf{u}_{\alpha}^{(1)}\left(k \boldsymbol{r}_{<}\right) \mathbf{u}_{\alpha}^{(4)}\left(k \boldsymbol{r}_{>}\right) . \tag{4}
\end{equation*}
$$

Impedance matrix \mathbf{Z} with spherical wave expansion substituted

$$
\begin{equation*}
Z_{p q}=k^{2} Z_{0} \sum_{\alpha} \int_{\Omega} \int_{\Omega} \boldsymbol{\psi}_{p}\left(\boldsymbol{r}_{1}\right) \cdot \mathbf{u}_{\alpha}^{(1)}\left(k \boldsymbol{r}_{<}\right) \mathbf{u}_{\alpha}^{(4)}\left(k \boldsymbol{r}_{>}\right) \cdot \boldsymbol{\psi}_{q}\left(\boldsymbol{r}_{2}\right) \mathrm{d} S_{1} \mathrm{~d} S_{2} \tag{5}
\end{equation*}
$$

[^6]
Spherical Wave Expansion of Dyadic Green Function

Spherical wave expansion of dyadic Green function reads ${ }^{3}$

$$
\begin{equation*}
\mathbf{G}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=-\mathrm{j} k \sum_{\alpha} \mathbf{u}_{\alpha}^{(1)}\left(k \boldsymbol{r}_{<}\right) \mathbf{u}_{\alpha}^{(4)}\left(k \boldsymbol{r}_{>}\right) . \tag{4}
\end{equation*}
$$

Impedance matrix \mathbf{Z} with spherical wave expansion substituted

$$
\begin{equation*}
Z_{p q}=k^{2} Z_{0} \sum_{\alpha} \int_{\Omega} \int_{\Omega} \boldsymbol{\psi}_{p}\left(\boldsymbol{r}_{1}\right) \cdot \mathbf{u}_{\alpha}^{(1)}\left(k \boldsymbol{r}_{<}\right) \mathbf{u}_{\alpha}^{(4)}\left(k \boldsymbol{r}_{>}\right) \cdot \boldsymbol{\psi}_{q}\left(\boldsymbol{r}_{2}\right) \mathrm{d} S_{1} \mathrm{~d} S_{2} \tag{5}
\end{equation*}
$$

can be used for reformulation of matrix \mathbf{R} since $\mathbf{u}_{\alpha}^{(1)}(k \boldsymbol{r})=\operatorname{Re}\left\{\mathbf{u}_{\alpha}^{(4)}(k \boldsymbol{r})\right\}$ as

$$
\begin{equation*}
R_{p q}=k^{2} Z_{0} \sum_{\alpha} \int_{\Omega} \boldsymbol{\psi}_{p}\left(\boldsymbol{r}_{1}\right) \cdot \mathbf{u}_{\alpha}^{(1)}\left(k \boldsymbol{r}_{1}\right) \mathrm{d} S_{1} \int_{\Omega} \mathbf{u}_{\alpha}^{(1)}\left(k \boldsymbol{r}_{2}\right) \cdot \boldsymbol{\psi}_{q}\left(\boldsymbol{r}_{2}\right) \mathrm{d} S_{2} \tag{6}
\end{equation*}
$$

[^7]
Spherical Wave Expansion of Dyadic Green Function

Spherical wave expansion of dyadic Green function reads ${ }^{3}$

$$
\begin{equation*}
\mathbf{G}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=-\mathrm{j} k \sum_{\alpha} \mathbf{u}_{\alpha}^{(1)}\left(k \boldsymbol{r}_{<}\right) \mathbf{u}_{\alpha}^{(4)}\left(k \boldsymbol{r}_{>}\right) \tag{4}
\end{equation*}
$$

Impedance matrix \mathbf{Z} with spherical wave expansion substituted

$$
\begin{equation*}
Z_{p q}=k^{2} Z_{0} \sum_{\alpha} \int_{\Omega} \int_{\Omega} \boldsymbol{\psi}_{p}\left(\boldsymbol{r}_{1}\right) \cdot \mathbf{u}_{\alpha}^{(1)}\left(k \boldsymbol{r}_{<}\right) \mathbf{u}_{\alpha}^{(4)}\left(k \boldsymbol{r}_{>}\right) \cdot \boldsymbol{\psi}_{q}\left(\boldsymbol{r}_{2}\right) \mathrm{d} S_{1} \mathrm{~d} S_{2} \tag{5}
\end{equation*}
$$

can be used for reformulation of matrix \mathbf{R} since $\mathbf{u}_{\alpha}^{(1)}(k \boldsymbol{r})=\operatorname{Re}\left\{\mathbf{u}_{\alpha}^{(4)}(k \boldsymbol{r})\right\}$ as

$$
R_{p q}=k^{2} Z_{0} \sum_{\alpha}\left(\int_{\Omega} \boldsymbol{\psi}_{p}\left(\boldsymbol{r}_{1}\right) \cdot \mathbf{u}_{\alpha}^{(1)}\left(k \boldsymbol{r}_{1}\right) \mathrm{d} S_{1}\right)\left(\int_{\Omega} \mathbf{u}_{\alpha}^{(1)}\left(k \boldsymbol{r}_{2}\right) \cdot \boldsymbol{\psi}_{q}\left(\boldsymbol{r}_{2}\right) \mathrm{d} S_{2}\right)
$$

[^8]
Definition of Projection Matrix S

Resistance matrix \mathbf{R} is expressed as a product of two identical rectangular matrices:

$$
R_{p q}=\sum_{\alpha}\left(k \sqrt{Z_{0}} \int_{\Omega} \boldsymbol{\psi}_{p}\left(\boldsymbol{r}_{1}\right) \cdot \mathbf{u}_{\alpha}^{(1)}\left(k \boldsymbol{r}_{1}\right) \mathrm{d} S_{1}\right)\left(k \sqrt{Z_{0}} \int_{\Omega} \mathbf{u}_{\alpha}^{(1)}\left(k \boldsymbol{r}_{2}\right) \cdot \boldsymbol{\psi}_{q}\left(\boldsymbol{r}_{2}\right) \mathrm{d} S_{2}\right)
$$

Definition of Projection Matrix S

Resistance matrix \mathbf{R} is expressed as a product of two identical rectangular matrices:

$$
R_{p q}=\sum_{\alpha}\left(k \sqrt{Z_{0}} \int_{\Omega} \psi_{p}\left(\boldsymbol{r}_{1}\right) \cdot \mathbf{u}_{\alpha}^{(1)}\left(k \boldsymbol{r}_{1}\right) \mathrm{d} S_{1}\right)\left(k \sqrt{Z_{0}} \int_{\Omega} \mathbf{u}_{\alpha}^{(1)}\left(k \boldsymbol{r}_{2}\right) \cdot \boldsymbol{\psi}_{q}\left(\boldsymbol{r}_{2}\right) \mathrm{d} S_{2}\right)
$$

Definition ${ }^{4}$ of the matrix $\mathrm{S} \in \mathbb{R}^{N_{\alpha} \times N}$

$$
\begin{equation*}
S_{\alpha p}=k \sqrt{Z_{0}} \int_{\Omega} \boldsymbol{\psi}_{p}(\boldsymbol{r}) \cdot \mathbf{u}_{\alpha}^{(1)}(k \boldsymbol{r}) \mathrm{d} S, \tag{6}
\end{equation*}
$$

and its relation to the resistance matrix

$$
\begin{equation*}
\mathbf{R}=\mathbf{S}^{\mathrm{T}} \mathbf{S} \tag{7}
\end{equation*}
$$

	S
$\mathbf{S}^{\text {T }}$	$\mathbf{R}=\mathbf{S}^{\mathrm{T}} \mathbf{S}$

[^9]Properties of Matrix S, Part \#1

Properties of Matrix S, Part \#1

- Matrix \mathbf{S} is real-valued, rectangular, low-rank

$$
\begin{align*}
N_{\alpha} & =2 L(L+2), \tag{8}\\
L & =\lceil k a+7 \sqrt[3]{k a}+2\rceil . \tag{9}
\end{align*}
$$

Properties of Matrix S, Part \#1

- Matrix \mathbf{S} is real-valued, rectangular, low-rank

$$
\begin{align*}
N_{\alpha} & =2 L(L+2), \tag{8}\\
L & =\lceil k a+7 \sqrt[3]{k a}+2\rceil . \tag{9}
\end{align*}
$$

- Matrix $\mathbf{S}^{\mathrm{T}} \mathbf{S}$ does not contain any negative eigenvalue higher than numerical noise.

Properties of Matrix S, Part \#1

- Matrix \mathbf{S} is real-valued, rectangular, low-rank

$$
\begin{align*}
N_{\alpha} & =2 L(L+2), \tag{8}\\
L & =\lceil k a+7 \sqrt[3]{k a}+2\rceil . \tag{9}
\end{align*}
$$

- Matrix $\mathbf{S}^{\mathrm{T}} \mathbf{S}$ does not contain any negative eigenvalue higher than numerical noise.
- Matrix \mathbf{S} represents projection between RWGs and spherical waves, i.e.,

$$
\begin{align*}
\mathbf{R} & =\mathbf{S}^{\mathrm{T}} \mathbf{S} \tag{10}\\
\mathbf{R}^{\mathrm{sph}} & =\mathbf{S S}^{\mathrm{T}} \tag{11}
\end{align*}
$$

Properties of Matrix S, Part \#2

Radiated power can be calculated as

$$
\begin{equation*}
P_{\mathrm{rad}}=\frac{1}{2 Z_{0}} \int_{S^{2}}|\boldsymbol{F}(\hat{\boldsymbol{r}})|^{2} \mathrm{~d} S \approx \frac{1}{2} \mathbf{I}^{\mathrm{H}} \mathbf{R I}=\frac{1}{2}|\mathbf{S I}|^{2}=\frac{1}{2} \sum_{\alpha}\left|f_{\alpha}\right|^{2} \tag{12}
\end{equation*}
$$

with

$$
\begin{equation*}
\boldsymbol{F}(\hat{\boldsymbol{r}})=\frac{1}{k} \sum_{\alpha} \mathrm{j}^{l-\tau+2} f_{\alpha} \mathbf{Y}_{\alpha}(\hat{\boldsymbol{r}}), \tag{13}
\end{equation*}
$$

where $\mathbf{Y}_{\alpha}(\hat{\boldsymbol{r}})$ are the real-valued spherical vector harmonics.

Properties of Matrix S, Part \#2

Radiated power can be calculated as

$$
\begin{equation*}
P_{\mathrm{rad}}=\frac{1}{2 Z_{0}} \int_{S^{2}}|\boldsymbol{F}(\hat{\boldsymbol{r}})|^{2} \mathrm{~d} S \approx \frac{1}{2} \mathbf{I}^{\mathrm{H}} \mathbf{R I}=\frac{1}{2}|\mathbf{S I}|^{2}=\frac{1}{2} \sum_{\alpha}\left|f_{\alpha}\right|^{2} \tag{12}
\end{equation*}
$$

with

$$
\begin{equation*}
\boldsymbol{F}(\hat{\boldsymbol{r}})=\frac{1}{k} \sum_{\alpha} \mathrm{j}^{l-\tau+2} f_{\alpha} \mathbf{Y}_{\alpha}(\hat{\boldsymbol{r}}) \tag{13}
\end{equation*}
$$

where $\mathbf{Y}_{\alpha}(\hat{\boldsymbol{r}})$ are the real-valued spherical vector harmonics.

Example				Comp. times in IDA (s)		
	N_{α}	N	\mathbf{R}	\mathbf{S}	$\mathbf{R}=\mathbf{S}^{\mathrm{T}} \mathbf{S}$	
spherical shell	880	750	0.09	0.009	0.011	
spherical shell	880	3330	1.78	0.039	0.083	
helicopter	880	18898	54.50	0.236	1.660	

CMs Using SVD of matrix \mathbf{S} and GEP Partitioning

Singular value decomposition (SVD) of matrix \mathbf{S}

$$
\begin{equation*}
\mathbf{S}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{H}} \tag{14}
\end{equation*}
$$

substituted into CM definition gives

$$
\begin{equation*}
\left(\mathbf{V}^{\mathrm{H}} \mathbf{X V}\right)\left(\mathbf{V}^{\mathrm{H}} \mathbf{I}_{n}\right)=\lambda_{n}\left(\boldsymbol{\Lambda}^{\mathrm{H}} \boldsymbol{\Lambda}\right)\left(\mathbf{V}^{\mathrm{H}} \mathbf{I}_{n}\right) \quad \longrightarrow \quad \widetilde{\mathbf{X}} \widetilde{\mathbf{I}}_{n}=\lambda_{n} \widetilde{\mathbf{R}} \widetilde{\mathbf{I}}_{n}, \tag{15}
\end{equation*}
$$

CMs Using SVD of matrix \mathbf{S} and GEP Partitioning

Singular value decomposition (SVD) of matrix \mathbf{S}

$$
\begin{equation*}
\mathbf{S}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{H}} \tag{14}
\end{equation*}
$$

substituted into CM definition gives

$$
\begin{equation*}
\left(\mathbf{V}^{\mathrm{H}} \mathbf{X V}\right)\left(\mathbf{V}^{\mathrm{H}} \mathbf{I}_{n}\right)=\lambda_{n}\left(\boldsymbol{\Lambda}^{\mathrm{H}} \boldsymbol{\Lambda}\right)\left(\mathbf{V}^{\mathrm{H}} \mathbf{I}_{n}\right) \quad \longrightarrow \quad \widetilde{\mathbf{X}} \widetilde{\mathbf{I}}_{n}=\lambda_{n} \widetilde{\mathbf{R}} \widetilde{\mathbf{I}}_{n}, \tag{15}
\end{equation*}
$$

Partitioning

$$
\widetilde{\mathbf{X}} \widetilde{\mathbf{I}}=\left(\begin{array}{ll}
\widetilde{\mathbf{X}}_{11} & \widetilde{\mathbf{X}}_{12} \tag{16}\\
\widetilde{\mathbf{X}}_{21} & \widetilde{\mathbf{X}}_{22}
\end{array}\right)\binom{\widetilde{\mathbf{I}}_{1 n}}{\widetilde{\mathbf{I}}_{2 n}}=\binom{\lambda_{1 n} \widetilde{\mathbf{R}}_{11} \widetilde{\mathbf{I}}_{1 n}}{\mathbf{0}}
$$

and reducing to Schur complement yields the final GEP formulation

$$
\begin{equation*}
\left(\widetilde{\mathbf{X}}_{11}-\widetilde{\mathbf{X}}_{12} \widetilde{\mathbf{X}}_{22}^{-1} \widetilde{\mathbf{X}}_{21}\right) \widetilde{\mathbf{I}}_{1 n}=\lambda_{1 n} \widetilde{\mathbf{R}}_{11} \widetilde{\mathbf{I}}_{1 n} . \tag{17}
\end{equation*}
$$

Properties of the Decomposition:

Characteristic modes are constructed as

$$
\begin{equation*}
\widetilde{\mathbf{I}}_{n}=\binom{\widetilde{\mathbf{I}}_{1 n}}{-\widetilde{\mathbf{X}}_{22}^{-1} \widetilde{\mathbf{X}}_{21} \widetilde{\mathbf{I}}_{1 n}}, \tag{18}
\end{equation*}
$$

radiated power is implicitly normalized by $\boldsymbol{\Lambda}^{\mathrm{H}} \boldsymbol{\Lambda}$ matrix in (15)

$$
\begin{equation*}
\widetilde{\mathbf{I}}_{n}^{\mathrm{H}} \widetilde{\mathbf{R}} \widetilde{\mathbf{I}}_{m}=\delta_{n m} \tag{19}
\end{equation*}
$$

[^10]Properties of the Decomposition:

Characteristic modes are constructed as

$$
\begin{equation*}
\widetilde{\mathbf{I}}_{n}=\binom{\widetilde{\mathbf{I}}_{1 n}}{-\widetilde{\mathbf{X}}_{22}^{-1} \widetilde{\mathbf{X}}_{21} \widetilde{\mathbf{I}}_{1 n}}, \tag{18}
\end{equation*}
$$

radiated power is implicitly normalized by $\boldsymbol{\Lambda}^{\mathrm{H}} \boldsymbol{\Lambda}$ matrix in (15)

$$
\begin{equation*}
\widetilde{\mathbf{I}}_{n}^{\mathrm{H}} \widetilde{\mathbf{R}} \widetilde{\mathbf{I}}_{m}=\delta_{n m} \tag{19}
\end{equation*}
$$

Properties ${ }^{4}$:

- numerical dynamics doubled thanks to the SVD and partitioning,
- number of used spherical modes controls the number of CMs,
- for $N_{\alpha} \ll N$ (always fulfilled in ESA regime) remarkable speed-up.

[^11]
Spherical Shell

Spherical Shell

Spherical Shell

Rectangular Plate

100 modes were calculated (eigs)

- (X, R) 0.7s (29)
- (X, R) + Advanpix: 1324 s
- ($\widetilde{\mathbf{X}}, \widetilde{\mathbf{R}}) 0.5 \mathrm{~s}(37)$
(If matrix \mathbf{S} is reduced, calculation further accelerated.)

100 modes were calculated (eigs)

- (X, R) 0.7s (29)
- (X, R) + Advanpix: 1324 s
- ($\widetilde{\mathbf{X}}, \widetilde{\mathbf{R}}) 0.5 \mathrm{~s}(37)$
(If matrix \mathbf{S} is reduced, calculation further accelerated.)

Rectangular Plate

100 modes were calculated (eigs)

- (X, R) 0.7s (29)
- (X, R) + Advanpix: 1324 s
- ($\widetilde{\mathbf{X}}, \widetilde{\mathbf{R}}) 0.5 \mathrm{~s}(37)$
(If matrix \mathbf{S} is reduced, calculation further accelerated.)

Rectangular Plate - Higher-order Modes

Two high-order modes of rectangular plate:

- left: inductive, $n=17$,
$\lambda_{17}=2.461 \cdot 10^{17}$,
- right: capacitive, $n=77$, $\lambda_{77}=-1.947 \cdot 10^{24}$.

Rectangular Plate - Higher-order Modes

Two high-order modes of rectangular plate:

- left: inductive, $n=17$,
$\lambda_{17}=2.461 \cdot 10^{17}$,
- right: capacitive, $n=77$, $\lambda_{77}=-1.947 \cdot 10^{24}$.

Such high-order modes are not needed in practice (except tracking).

- However, accuracy can be interchanged for comp. speed.

Acceleration of the CMs Decomposition

If double precision is enough, however, computational speed is required:

$$
\begin{equation*}
\mathbf{X} \mathbf{I}_{n}=\lambda_{n} \mathbf{S}^{\mathrm{T}} \mathbf{S} \mathbf{I}_{n} \tag{20}
\end{equation*}
$$

Acceleration of the CMs Decomposition

Kin

If double precision is enough, however, computational speed is required:

$$
\begin{equation*}
\mathbf{X} \mathbf{I}_{n}=\lambda_{n} \mathbf{S}^{\mathrm{T}} \mathbf{S} \mathbf{I}_{n} \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{S I}_{n}=\lambda_{n} \mathbf{S X}^{-1} \mathbf{S}^{\mathrm{T}} \mathbf{S} \mathbf{I}_{n} \quad \longrightarrow \widehat{\mathbf{X}} \widehat{\mathbf{I}}_{n}=\xi_{n} \widehat{\mathbf{I}}_{n} \tag{21}
\end{equation*}
$$

with $\widehat{\mathbf{X}}=\mathbf{S X} \mathbf{X}^{-1} \mathbf{S}^{\mathrm{T}}, \widehat{\mathbf{I}}_{n}=\mathbf{S I}$, and $\xi_{n}=1 / \lambda_{n}$.

Acceleration of the CMs Decomposition

If double precision is enough, however, computational speed is required:

$$
\begin{equation*}
\mathbf{X} \mathbf{I}_{n}=\lambda_{n} \mathbf{S}^{\mathrm{T}} \mathbf{S I}_{n} \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{S I}_{n}=\lambda_{n} \mathbf{S} \mathbf{X}^{-1} \mathbf{S}^{\mathrm{T}} \mathbf{S} \mathbf{I}_{n} \quad \longrightarrow \widehat{\mathbf{X}} \widehat{\mathbf{I}}_{n}=\xi_{n} \widehat{\mathbf{I}}_{n} \tag{21}
\end{equation*}
$$

with $\widehat{\mathbf{X}}=\mathbf{S X}^{-1} \mathbf{S}^{\mathrm{T}}, \widehat{\mathbf{I}}_{n}=\mathbf{S I}$, and $\xi_{n}=1 / \lambda_{n}$.

Properties:

- solved in basis of spherical waves $\left(\widehat{\mathbf{I}}_{n}=\mathbf{S I}\right)$,
- standard (not generalized) eigenvalue problem,
- solution of typically small $N_{\alpha} \times N_{\alpha}$ eigenvalue problem (extreme speed-up),
- all modes, well-represented in the spherical basis, are found,
- eig shall be used instead of eigs in MATLAB.

Acceleration of the CMs Decomposition - Comparison

Example					Comp. times (s)		
	CMs	N_{α}	N	(\mathbf{R}, \mathbf{X})	$(\widetilde{\mathbf{R}}, \widetilde{\mathbf{X}})$	$\left(\mathbf{S X}^{-1} \mathbf{S}^{\mathrm{T}}\right)$	
rectangular plate	100	510	655	0.7	0.8	0.5	$(510$ modes $)$
spherical shell	300	880	3330	$\mathbf{2 9}$	6.7	$\mathbf{2 . 6}$	(880 modes)
helicopter	25	880	18898	$\mathbf{1 4 9}$	170	$\mathbf{4 7}$	(880 modes)
helicopter	100	880	18898	$\mathbf{4 7 3}$	173	$\mathbf{4 7}$	$(880$ modes $)$

Windows Server 2012, $2 \times$ XEON E5-2665 @ 2.4 GHZ, 72 GB RAM

Acceleration of the CMs Decomposition - Comparison

Example					Comp. times (s)			
	CMs	N_{α}	N	(\mathbf{R}, \mathbf{X})	$(\widetilde{\mathbf{R}}, \widetilde{\mathbf{X}})$	$\left(\mathbf{S X}^{-1} \mathbf{S}^{\mathrm{T}}\right)$		
rectangular plate	100	510	655	0.7	0.8	0.5	$(510$ modes $)$	
spherical shell	300	880	3330	$\mathbf{2 9}$	6.7	$\mathbf{2 . 6}$	(880 modes)	
helicopter	25	880	18898	$\mathbf{1 4 9}$	170	$\mathbf{4 7}$	(880 modes)	
helicopter	100	880	18898	$\mathbf{4 7 3}$	173	$\mathbf{4 7}$	(880 modes)	

Windows Server 2012, $2 \times$ XEON E5-2665 @ 2.4 GHZ, 72 GB RAM

- ($\widetilde{\mathbf{R}}, \widetilde{\mathbf{X}})$ gives significantly more modes accurately and is typically faster.
- $\left(\mathbf{S X}^{-1} \mathbf{S}^{\mathrm{T}}\right)$ gives slightly more modes accurately and is significantly faster.
- $\left(\mathbf{S X}^{-1} \mathbf{S}^{\mathrm{T}}\right)$ finds all modes available from a given set of spherical harmonics.
- ($\left.\mathbf{S X}^{-1} \mathbf{S}^{\mathrm{T}}\right)$ decomposition is excellent for high $k a$ with large DOFs N.

Restriction to TM/TE Modes

Matrix $\mathbf{S}^{\mathrm{TM} / \mathrm{TE}}=\mathbf{S}(i,:)$ contains TE and TM modes in separate rows.

Restriction to TM/TE Modes

Matrix $\mathbf{S}^{\mathrm{TM} / \mathrm{TE}}=\mathbf{S}(i,:)$ contains TE and TM modes in separate rows.

Restriction to TM/TE Modes

Matrix $\mathbf{S}^{\mathrm{TM} / \mathrm{TE}}=\mathbf{S}(i,:)$ contains TE and TM modes in separate rows.

Conclusions

- New matrix operator based on MoM formalism,
- matrix \mathbf{S} has controllable and predictable behavior and numerically neat properties,
- matrix \mathbf{S} has many applications (some of them probably yet unknown),
- if \mathbf{X} is not needed, matrix \mathbf{S} should be preferred over \mathbf{R},
- with respect to the (characteristic) modes, the matrix \mathbf{S} is, in certain sense,

Dominant characteristic mode of helicopter model discretized into 18989 RWGs, $k a=1 / 2$. a return to their scattering origin ${ }^{5}$.

[^12]
Questions?

Miloslav Čapek
miloslav.capek@fel.cvut.cz

12. 4. 2018, v1.0

[^0]: ${ }^{1}$ R. F. Harrington and J. R. Mautz, "Computation of characteristic modes for conducting bodies", IEEE Trans. Antennas Propag., vol. 19, no. 5, pp. 629-639, 1971. DoI: 10.1109/TAP.1971.1139990

[^1]: ${ }^{1}$ R. F. Harrington and J. R. Mautz, "Computation of characteristic modes for conducting bodies", IEEE Trans. Antennas Propag., vol. 19, no. 5, pp. 629-639, 1971. DOI: 10.1109/TAP.1971.1139990

[^2]: ${ }^{1}$ R. F. Harrington and J. R. Mautz, "Computation of characteristic modes for conducting bodies", IEEE Trans. Antennas Propag., vol. 19, no. 5, pp. 629-639, 1971. DOI: 10.1109/TAP.1971.1139990

[^3]: ${ }^{1}$ R. F. Harrington and J. R. Mautz, "Computation of characteristic modes for conducting bodies", IEEE Trans. Antennas Propag., vol. 19, no. 5, pp. 629-639, 1971. DOI: 10.1109/TAP.1971.1139990

[^4]: ${ }^{2}$ M. Capek, V. Losenicky, L. Jelinek, et al., "Validating the characteristic modes solvers", IEEE Trans. Antennas Propag., vol. 65, no. 8, pp. 4134-4145, 2017. DOI: 10.1109/TAP. 2017. 2708094

[^5]: ${ }^{3}$ G. Kristensson, Scattering of electromagnetic waves by obstacles. Edison, NJ: SciTech Publishing, an imprint of the IET, 2016

[^6]: ${ }^{3}$ G. Kristensson, Scattering of electromagnetic waves by obstacles. Edison, NJ: SciTech Publishing, an imprint of the IET, 2016

[^7]: ${ }^{3}$ G. Kristensson, Scattering of electromagnetic waves by obstacles. Edison, NJ: SciTech Publishing, an imprint of the IET, 2016

[^8]: ${ }^{3}$ G. Kristensson, Scattering of electromagnetic waves by obstacles. Edison, NJ: SciTech Publishing, an imprint of the IET, 2016

[^9]: ${ }^{4}$ D. Tayli, M. Capek, L. Akrou, et al., "Accurate and efficient evaluation of characteristic modes", , 2017, submitted, arXiv:1709.09976. [Online]. Available: https://arxiv.org/abs/1709.09976

[^10]: ${ }^{4}$ D. Tayli, M. Capek, L. Akrou, et al., "Accurate and efficient evaluation of characteristic modes", , 2017, submitted, arXiv:1709.09976. [Online]. Available: https://arxiv.org/abs/1709.09976

[^11]: ${ }^{4}$ D. Tayli, M. Capek, L. Akrou, et al., "Accurate and efficient evaluation of characteristic modes", , 2017, submitted, arXiv:1709.09976. [Online]. Available: https://arxiv.org/abs/1709.09976

[^12]: ${ }^{5}$ C. G. Montgomery, R. H. Dicke, and E. M. Purcell, Principles of microwave circuits. New York, United States: McGraw-Hill, 1948
 R. J. Garbacz, "A generalized expansion for radiated and scattered fields", PhD thesis, Department of Electrical Engineering, Ohio State University, 1968

