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(Sub-)optimal solution of maximum
scattering cross section of slab made of gold
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Shape Analysis, Synthesis, and Optimal Design

Analysis × Synthesis

Ω1 Ω2
Ω3

Analysis (A)

I Shape Ω is given, BCs are known,
determine EM quantities.

p = LJ (r) = A
{
Ω,Ei

}

?

Synthesis (S ≡ A−1)

I EM behavior is specified, neither Ω nor
BCs are known.

{
Ω,Ei

}
= A−1p = Sp

I p is an investigated quantity (Zin, Q, Prad, ηrad,. . . ) or a composite metric
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Shape Analysis, Synthesis, and Optimal Design

Antenna Design

Materials
ρ(r)

Geometry
Ω

Excitation
Ei

Electrical
size

Design domain

Directivity
D(ê, r̂)

Efficiency
η

Bandwidth
Q

Electrical
size

Criteria domain

Electrical
size

Analysis
A

Synthesis
S
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Shape Analysis, Synthesis, and Optimal Design

Shape Synthesis: Rigorous Definition

For a given impedance matrix Z ∈ CN×N , matrices A, {Bi}, {Bj}, (a given) excitation
vector V ∈ CN , find a vector x such that

minimize IHA (x) I

subject to IHBi (x) I = pi

IHBj (x) I ≤ pj
Z (x) I = V

x ∈ {0, 1}N

x = 1 1 0 · · · 1

[ ]

Z11 Z12 Z13 · · · Z1N

Z21 Z22 Z23 · · · Z2N

Z31 Z32 Z33 · · · Z3N

...
...

...
. . .

...

ZN1 ZN2 ZN3 · · · ZNN







I1

I2

I3

...

IN







=

V1

V2

V3

...

VN







I Combinatorial optimization1 (suffers from curse of dimensionality, 2N possible solutions),

I vector x serves as a characteristic function (structure perturbation).

1G. L. Nemhauser and L. A. Wolsey, Integer an Combinatorial Optimization. John Wiley & Sons, 1999,
isbn: 0-471-35943-2
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Parameterization of a Model

Degrees of Freedom
Bounding box

→ discretization→ basis functions→ degrees of freedom to be optimized

Ω

→ {Tt} → {ψn (r)} → g

I g ∈ {0, 1}N×1 is characteristic vector (discretized characteristic function)
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Parameterization of a Model

Shape Optimization With Exact Reanalysis

Capability to effectively remove/add a degree of freedom.2

I Perfectly compatible with
method of moments;

I basis functions used as DOF.

I Inversion-free for the smallest
perturbations;

I gradient-based shape
optimization possible
deterministically.

Example of topology sensitivity, ka = 1/2, plate fed in the middle.

2M. Capek, L. Jelinek, and M. Gustafsson, “Shape synthesis based on topology sensitivity,” IEEE Trans.
Antennas Propag., vol. 67, no. 6, pp. 3889 –3901, 2019. doi: 10.1109/TAP.2019.2902749
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Removal and Addition of DOF

Update of an EM System With Exact Reanalysis

Modification of the shape described by impedance matrix Z

Y = Z−1 =

[
A B
C D

]
=

[
A−1 + A−1BE−1CA−1 −A−1BE−1

−E−1CA−1 E−1

]

and consequently perturbation of the current density

I = YV. (1)
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Removal and Addition of DOF

Removing and Adding DOF (Delta Gap Feeder)

DOF removal:

Î =

(
yf −

Yfb
Ybb

yb

)
lfV0,

Admittance matrix update:

Ŷ = CT

(
Y − 1

Ybb
yby

T
b

)
C,

DOF addition:

Î = CT

([
yf
0

]
+
xfb
zb

[
xb
−1

])
lfV0,

Admittance matrix update:

Ŷ =
1

zb
CT

[
zbY + xbx

T
b −xb

−xT
b 1

]
C,

Cnn =

{
0 ⇔ gn = b
1 ⇔ otherwise

xb = Yz̃b, zb = Z̃bb − z̃Tb xb

Cmn =

{
1 ⇔ gn = S (m)
0 ⇔ otherwise

I All columns of C matrix containing solely zeros are eliminated before use.
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Ŷ = CT

(
Y − 1

Ybb
yby

T
b

)
C,

DOF addition:
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Miloslav Čapek, et al. Fundamental Bounds For Volumetric Structures and Their Feasibility 9 / 18

https://www.cvut.cz/en


Removal and Addition of DOF

Removing and Adding DOF (Delta Gap Feeder)

DOF removal:

Î =

(
yf −

Yfb
Ybb

yb

)
lfV0,

Admittance matrix update:
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Removal and Addition of DOF

global step

local step

Ω,Einc, ka,P Z, Wm, . . . generate gi

Ŷ = Z−1 (gi)

τ (̂I,P)

min
n
τn < 0 update Ŷp∗, Ω∗

yesno

Ω
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Ŷ = Z−1 (gi)

τ
(
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p∗, Ω∗

yes

no

yesno

Ω
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Topology Sensitivity for VMoM

Volumetric Method of Moments

I Tetrahedral discretization.

I Piece-wise constant basis functions.

I (Expensive) volumetric quadrature converted to surface integrals 3.

Ti

ŷ

ẑ

x̂

Zmn = −j
Z0

k

∫

Vm

ψm (r) ·
(
1 + χ−1 (r)

)
·ψn (r) dV − j

Z0

k

∮

Sm

∮

Sn

Ψmn(r, r′)G (r, r′) dS′ dS,

Ψmn(r, r′) = ψm (r) · nn (r′)ψn (r′) · nm (r)−ψm (r) ·ψn (r′)nn (r′) · nm (r)

3A. Polimeridis, J. Villena, L. Daniel, et al., “Stable FFT-JVIE solvers for fast analysis of highly
inhomogeneous dielectric objects,” Journal of Computational Physics, vol. 269, pp. 280–296, 2014. doi:
10.1016/j.jcp.2014.03.026. [Online]. Available: https://doi.org/10.1016/j.jcp.2014.03.026
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Topology Sensitivity for VMoM

Radiation Efficiency Bounds

I The optimization problems P1 and P2 can rigorously be formulated.

I Having quadratic forms for the physical quantities, the antenna metrics may be optimized.

I The problems P1 and P2 are quadratically constrained quadratic programs4 (QCQP).

Maximum radiation efficiency

Problem P1:

minimize Ploss

subject to Prad = 1

Maximum self-resonant radiation efficiency

Problem P2:

minimize Ploss

subject to Prad = 1

ω (Wm −We) = 0
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Topology Sensitivity for VMoM

Algebraic Representation of Integral Operators
Radiated and reactive power

Complex power balance:

Prad + Plost + 2jω (Wm −We) =
1

2
〈J (r) ,Z [J (r)]〉 ≈ 1

2
IHZI (2)

Radiated power:

Prad ≈
1

2
IHR0I (3)

Lost power:

Plost ≈
1

2
IHRρI (4)

Zmn = −j
Z0

k

∫
Vm

ψm (r) ·
(
1 + χ−1 (r)

)
·ψn (r) dV − j

Z0

k

∮
Sm

∮
Sn

Ψmn(r, r′)G
(
r, r′

)
dS′ dS,
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Topology Sensitivity for VMoM: Examples

Example: A Gold Nanoparticle – Radiation Efficiency

r = 100 nm

Au

A particle (Au).

100 200 300 400 500 600 700

0.2

0.4

0.6

0.8

1

f (THz)

η r
a
d

Au, MoM
Au, P1

Radiation efficiency: MoM solution compared with optimal performance.
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Topology Sensitivity for VMoM: Examples

Scattering Cross Section in Dielectric Slab

Fundamental bound5:

minimize
1

2
IHR0I

subject to IHRI− Re{IHV} = 0

IHXI− Im{IHV} = 0

MoM evaluation (for topology optimization):

I = Z−1V

σscat =
1

2

IHR0I

S0

Optimal current maximizing scattering cross section at
770 MHz, VMoM, golden slab.

5M. Gustafsson, K. Schab, L. Jelinek, et al., “Upper bounds on absorption and scattering,”, 2019, eprint
arXiv: 1912.06699. [Online]. Available: https://arxiv.org/abs/1912.06699

6A. Derkachova, K. Kolwas, and I. Demchenko, “Dielectric function for gold in plasmonics applications: Size
dependence of plasmon resonance frequencies and damping rates for nanospheres,” Plasmonics, vol. 11,
pp. 941–951, 3 Jun. 2016. doi: 10.1007/s11468-015-0128-7
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Topology Sensitivity for VMoM: Examples

Comparison of Fundamental Bounds and Optimal Designs

0.6 0.7 0.8 0.9 1 1.2 1.4 1.6 1.8 2 2.3 2.6

0.1

1

A

B

A

B

λ/2πa

σ
sc
a
t
/π
a
2

bound
TS+GA

Optimization setting: slab `× `/2× `/10, ` = 200 nm, f ∈ [160, 770] THz, gold6, plane wave (V) polarized
along x axis, perpendicular angle of incidence, 1380 basis functions.
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Concluding Remarks

Concluding Remarks

What has been done

I Deterministic inversion-free structure perturbation (removal/addition).

I A novel memetic algorithm.

I Knowledge of gradients for a given (fixed) EM model.

I Robustness and immunity against local minima.
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I Knowledge of gradients for a given (fixed) EM model.

I Robustness and immunity against local minima.

Topics of ongoing research

I Acceleration on GPUs.

I Utilization of big data gathered during the optimization.

I Regularization to remove irregularities.

I Adaptive Greedy strategies to overcome slow convergence.

I How to interpret enabled/disabled {x̂, ŷ, ẑ} basis functions? Anisotropic
material?
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Questions

Questions?

Miloslav Čapek
miloslav.capek@fel.cvut.cz

April 6, 2020
version 1.0

The presentation is available at I capek.elmag.org
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