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This talk concerns:

I electric currents in vacuum,

I time-harmonic quantities, i.e., A (r, t) = Re {A (r) exp (jωt)}.

Topology sensitivity of a PIFA.
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Shape Synthesis

Analysis × Synthesis

Analysis (A)

I Shape Ω is given, BCs are known,
determine EM quantities.

g = L{J (r)} = Af

?

Synthesis (S ≡ A−1)

I EM behavior is specified, neither Ω nor
BCs are known.

f = Sg = A−1g

f ≡
{
Ω,Ei

}
, g ≡ {p}
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Shape Synthesis

Synthesis

How to get f = A−1g?

Questions inherently related to synthesis are1 (f ≡
{
Ω,Ei

}
, g ≡ {pi})

1. Can g be chosen arbitrary?

2. If g is such that there exists a solution f , is that solution unique?

3. If g is known only approximately, which is always the case, is the corresponding solution
for f close to the exact one?

4. If f is not exactly realized what effect will this have on Af?

Generally, infinitely many possibilities and local minima → need for shape discretization.

1G. Deschamps and H. Cabayan, “Antenna synthesis and solution of inverse problems by regularization
methods,” IEEE Transactions on Antennas and Propagation, vol. 20, no. 3, pp. 268–274, 1972. doi:
10.1109/tap.1972.1140197. [Online]. Available: https://doi.org/10.1109/tap.1972.1140197
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How to get f = A−1g?

Questions inherently related to synthesis are1 (f ≡
{
Ω,Ei

}
, g ≡ {pi})

1. Can g be chosen arbitrary? No.

2. If g is such that there exists a solution f , is that solution unique? No.

3. If g is known only approximately, which is always the case, is the corresponding solution
for f close to the exact one? No.

4. If f is not exactly realized what effect will this have on Af? Potentially huge.

Generally, infinitely many possibilities and local minima → need for shape discretization.

1G. Deschamps and H. Cabayan, “Antenna synthesis and solution of inverse problems by regularization
methods,” IEEE Transactions on Antennas and Propagation, vol. 20, no. 3, pp. 268–274, 1972. doi:
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Discretization of a Model

Discretization

Ω

σ →∞
(PEC)

Original problem.

Ω

ε0, µ0

Equivalent problem.

ΩT

Triangularized domain ΩT .

Structure Ω → ΩT , current density in vacuum J (r), r ∈ ΩT .
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Discretization of a Model

Operators Represented In RWG Basis Functions

Starting point in this work is a given discretization into T triangles ti, ΩT =
T⋃
i=1

ti.

RWG basis functions {ψn (r)} are applied as

J (r) ≈
N∑

n=1

Inψn (r) ,

where N is the number of all inner edges.

Matrix representation of the operators used

〈J ,AJ〉 = [I∗m〈ψm,Aψn〉In] = IHAI.

P+
n

P−
n

ρ+n
ρ−n

A+
n

A−
n

lnT+
n

T−
n

O

r

y

z

x
ψn (r) =

ln

2A±
n
ρ±n

RWG basis function ψn (r).
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Shape Synthesis Techniques

Shape Synthesis: Properties and Approaches

1. Designers’ skill and knowledge.

I Nonintuitive/complex design?

2. Parametric sweeps.

I What parameters? How many?

3. Heuristic algorithms (global optimization).

I Convergence. No-free-lunch. “Solution.”

4. Topology optimization (local optimization).

I This talk. . . partly.

Optimal solution:

I Combination of all approaches.
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Shape Synthesis Techniques

Topology Optimization

minimize f =

∫

Ω

F (ρ (r)) dV

subject to

∫

Ω

ρdV − V0 ≤ 0

I min. compliance → max.
stiffness

I solved within FEM

I mesh dependence

I instability (chess board)

1216× 3456× 256 ≈ 1.1 · 109 unknowns, FEM2.
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ρdV − V0 ≤ 0

I min. compliance → max.
stiffness

I solved within FEM

I mesh dependence

I instability (chess board)

1216× 3456× 256 ≈ 1.1 · 109 unknowns, FEM2.

2N. Aage, E. Andreassen, B. S. Lazarov, et al., “Giga-voxel computational morphogenesis for structural
design,” Nature, vol. 550, pp. 84–86, 2017. doi: 10.1038/nature23911
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Shape Synthesis Techniques

Topology Optimization in EM

State-of-the-art in mechanics, serious problems in EM3

I “gray” elements, rounding yields different results,

I numerical oscillation (chessboard),

I more sensitive to local minima (current paths?),

I threshold function for MoM.

Fundamental difference between EM vector field and
stiffness in mechanics?

Histogram of the best candidates
found for minIQ, NSGA-II.

3S. Liu, Q. Wang, and R. Gao, “A topology optimization method for design of small GPR antennas,”
Struct. Multidisc. Optim., vol. 50, pp. 1165–1174, 2014. doi: 10.1007/s00158-014-1106-y
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Topology Sensitivity: Motivation

Topology Sensitivity

Idea behind this work

Let us accept NP-hardness of the problem, do brute force, but do it cleverly. . .

I Inspired by pixeling4, but RWG functions are the unknowns (T vs. N unknowns).

I Fixed mesh grid ΩT : operators calculated once, results comparable with the bounds.

I Woodbury identity employed: get rid of repetitive matrix inversion!

I Feeding is specified at the beginning.
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4Y. Rahmat-Samii, J. M. Kovitz, and H. Rajagopalan, “Nature-inspired optimization techniques in
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10.1109/JPROC.2012.2188489
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Topology Sensitivity: Motivation

Comparison of Pixeling Techniques

Pixel removal

T1

T2

T3

T4

T5

T6

T7

T8

Z11 Z12 Z13 · · · Z1N

Z21 Z22 Z23 · · · Z2N

Z31 Z32 Z33 · · · Z3N

...
...

...
. . .

...

ZN1 ZN2 ZN3 · · · ZNN







Classical pixeling removes metallic patches5.

(ZG + ZL) I = ZI = V

Edge removal

ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

ψ7

ψ8

ψ9

0 0 0 · · · 0

0 Y22 Y23 · · · Y2N

0 Y32 Y33 · · · Y2N

...
...

...
. . .

...

0 YN2 YN3 · · · YNN







Proposed basis function removal.

I = Z−1V = YV

5Y. Rahmat-Samii, J. M. Kovitz, and H. Rajagopalan, “Nature-inspired optimization techniques in
communication antenna design,” Proc. IEEE, vol. 100, no. 7, pp. 2132–2144, 2012. doi:
10.1109/JPROC.2012.2188489
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Topology Sensitivity: Motivation

Pixeling and Edge Removal

Comparison of the longest meander possible for classical pixeling and edge removal.

I “Infinitesimally” small perturbation of a structure ΩT is a removal of RWG edge6.

6M. Capek, L. Jelinek, and M. Gustafsson, “Shape synthesis based on topology sensitivity,” , 2018,
submitted, arxiv: 1808.02479. [Online]. Available: https://arxiv.org/abs/1808.02479
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Topology Sensitivity: Motivation

Shape Synthesis: Rigorous Definition

For a given impedance matrix Z ∈ CN×N , matrices A, {Bi}, {Bj}, given excitation
vector V ∈ CN , found a vector x such that

minimize IHA (x) I

subject to IHBi (x) I = pi

IHBj (x) I ≤ pj
Z (x) I = V

x ∈ {0, 1}N

I structure perturbation

I combinatorial optimization

I Â =
(
x ∗ xT

)
⊗A

minimize IHA (x) I

subject to IHBi (x) I = pi

IHBj (x) I ≤ pj
Z (x) I = V

x ∈ [0, 1]
N

I material perturbation

I relaxation of the combinatorial approach

I Âii = Aii + xiR0
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Topology Sensitivity: Derivation

Incorporation of Lumped Element R∞

(ZG + ZL) I = ZI = V

Lumped element with resistivity R∞

ZL,nn = R∞ ⇔ n ∈ B

CB,nn =

{
0 ⇔ n 6∈ B
1 ⇔ otherwise

(All columns containing only zeros are removed.)

ZL = CBR∞CT
B ,

Example:
B = {1, 3}

CB =

[
1 0 0 · · · 0
0 0 1 · · · 0

]T

CBR∞CT
B =




R∞ 0 0 · · · 0
0 0 0 · · · 0
0 0 R∞ · · · 0
...

...
...

. . .
...

0 0 0 · · · 0
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Topology Sensitivity: Derivation

Utilization of Woodbury Formula

Definitions

Z = ZG + ZL = ZG + CBR∞CT
B , I = Z−1V = YV.

Sherman-Morrison-Woodbury formula

(A + EBF)
−1

= A−1 −A−1E
(
B−1 + FA−1E

)−1
FA−1

Y = Z−1 = Z−1G − Z−1G CB

(
1

R∞
1D + CT

BZ
−1
G CB

)−1
CT
BZ
−1
G

For Z−1G = YG and R∞ →∞

Y = YG −YGCB
(
CT
BYGCB

)−1
CT
BYG.
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Topology Sensitivity: Derivation

Simplification With Indexing Property of Matrix CB

Y = YG −YGCB
(
CT
BYGCB

)−1
CT
BYG.

For one (n-th) edge removed, |B| = 1:

YGCB = yG,n,
(
CT
BYGCB

)−1
=

1

Ynn
, CT

BYG = yT
G,n.

Notice CB is indexing matrix (MATLAB) only. . .

Y = YG −
yG,ny

T
G,n

Ynn
.
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Topology Sensitivity: Derivation

Incorporation of Fixed and Localized Feeding

Imagine further, that only one (f -th) edge is fed

Vf = V0
[

0 · · · lf · · · 0
]T
.

Ifn =

(
YG −

yG,ny
T
G,n

Ynn

)
Vf = · · · = If −

(
lf ln
l2n

Yfn
Ynn

)
V0lnyG,n = If + ζfnIn,

with If = YGVf and

ζij = − lilj
l2j

Yij
Yjj

= −Zin,jj

Zin,ij
.

This is equivalent to a specific two-port feeding

V = V0
[

0 . . . lf . . . ζfnln . . . 0
]T
.
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Topology Sensitivity: Derivation

Topology Sensitivity

All potential removals at once:

IfB =
[
If + ζf1I1 · · · If + ζfNIN

]
.

An antenna observable defined as quadratic form

x (I) =
IHAI

IHBI
.

is calculated with a Hadamard product (vectorization)

x (IfB) = diag
(
IHfBAIfB

)
� diag

(
IHfBBIfB

)
.

Finally, topology sensitivity is defined here as

τ fB (x,ΩT ) = x (IfB)− x (If ) ≈ ∇x (If ) .
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Topology Sensitivity: Examples

Example: Thin-strip Dipole – Input Reactance

−0.4 −0.2 0 0.2 0.4

0

500

1000

ξ/`

τ f
S
(|X

in
|,Ω

d
ip
)

k` = 3π/4
k` = π
k` = 3π/2

Topology sensitivity τ fB (|Xin|) of a center-fed dipole Ωdip, discretized into N = 79 basis functions, of three
different electrical lengths k`.
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Topology Sensitivity: Examples

Example: Thin-strip Dipole – Q-factor

1 2 3 4 5 6 7 8
1

2

3

4

5

6

A

B

A
B

k`

Q
/Q

lb

center-fed dipole
optimized shape

Radiation Q-factor of center-fed dipole Ωdip, discretized into N = 79 basis functions.
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Conversion to a Graph: Greedy Algorithm

Greedy Step

A discretization establishes a graph.

G (V,E) = G (P, E)→ {Ti} → {ψn (r)}
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Conversion to a Graph: Greedy Algorithm

Graph Representation: Reduction to Tree
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Synthesis for N = 4 as a directional binary tree.
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18 28
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Greedy algorithm in directional graph.
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Conversion to a Graph: Greedy Algorithm

Greedy Algorithm

One gradient-based search through the entire tree (the most pessimistic run):

I max (N − 1) series

I N (N − 1) (N − 2) · · · = N ! evaluations

Shermann-Morrison-Woodbury: N − n speed-up at every tree level

Note of solvability of the problem

Problem is not convex → combination of global and local algorithms.
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Conversion to a Graph: Greedy Algorithm

Greedy Algorithm – Example: Rectangular Plate
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Conversion to a Graph: Greedy Algorithm

Compression of the Problem

0 50 100 150 200 250 300 350
0
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80 p = ∞ 79.7 s
p = 1 84.9 s
p = 5 66.4 s
p = 50 63.3 s
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m
p
.
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m
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Conversion to a Graph: Greedy Algorithm

Number of Evaluated Antennas and Computational Time

plate (8× 4) plate (14× 7) sphere

electrical size (ka) 0.5 0.5 0.5

basis functions (N) 180 567 900

number of iterations (I) 71 279 380

evaluated antennas 10332 119420 270129

realized Q/Qlb 1.57 1.45 1.51

edge removal (p =∞) 0.30 s 23.5 s 79.7 s

edge removal (p = 50) 0.28 s 19.4 63.6 s

edge removal (p = 1) 0.43 s 23.3 s 84.9 s

classical pixel removal 10 s 1437 s 10500 s
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Conversion to a Graph: Greedy Algorithm

Moving in the Solution Space, Part #1

11 · · · 11

11 · · · 00

00 · · · 00

00 · · · 11
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Conversion to a Graph: Greedy Algorithm

Shape Reconstruction

I Basis functions can be added back (shape reconstruction).

[IE∪B] = CE∪b




yf +
xf1
z1

x1 · · · yf +
xfb
zb

xb · · ·

−xf1
z1

· · · −xfb
zb

· · ·


 lfV0

where
xb = Yzb, zb = Zbb − zTb xb.

Ω

Ω−

Ω+

Adding and removing DOF.
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Conversion to a Graph: Greedy Algorithm

Price to Pay for Reconstruction

100 101 102 103
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100

topo. removal
topo. removal (all vectors)
topo. addition

M operations (matrix size 2 · 103)
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m
p
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ti
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a
l
ti
m
e
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Conversion to a Graph: Greedy Algorithm

Moving in the Solution Space, Part #2
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Conversion to a Graph: Greedy Algorithm
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Conversion to a Graph: Greedy Algorithm

Moving in the Solution Space, Part #2
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Conversion to a Graph: Greedy Algorithm

Nearest Neighbor (NN) Search

An initial sample of topology sensitivity investigation.

The final sample resulting from a (NN) search.
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An initial sample of topology sensitivity investigation. The final sample resulting from a (NN) search.
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Conversion to a Graph: Greedy Algorithm

Live demonstration in MATLAB.

Miloslav Čapek Optimal Currents and Shape Synthesis in Electromagnetism 32 / 36



Concluding Remarks and Future Work

All Approaches to Synthesis at Once

Do not find an approximative solution of the exact model but, instead, find an exact
solution of the approximate model.
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Concluding Remarks and Future Work

Reduction of the Complexity

Full grid of 21× 11 pixels (N = 1354).
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Concluding Remarks and Future Work

Reduction of the Complexity

Truncated grid of 21× 11 pixels (N = 954).

Miloslav Čapek Optimal Currents and Shape Synthesis in Electromagnetism 34 / 36

https://www.cvut.cz/en


Concluding Remarks and Future Work

Reduction of the Complexity

Truncated grid of 21× 11 pixels with modified mesh
(N = 115).
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Concluding Remarks and Future Work

Concluding Remarks

What has been done7. . .

I Inversion-free structure perturbation (removal/addition).

I Evaluation of topology sensitivity, greedy algorithm.

I Vectorization and parallelization friendly algebraic derivation.

7M. Capek, L. Jelinek, and M. Gustafsson, “Shape synthesis based on topology sensitivity,” , 2018,
submitted, arxiv: 1808.02479. [Online]. Available: https://arxiv.org/abs/1808.02479
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Concluding Remarks and Future Work

Concluding Remarks

What has been done7. . .

I Inversion-free structure perturbation (removal/addition).

I Evaluation of topology sensitivity, greedy algorithm.

I Vectorization and parallelization friendly algebraic derivation.

Topics of ongoing research

I Analysis of existing designs – can they be improved?

I Add topology sensitivity into heuristic optimization as a local step.

I Utilization for “data mining” (machine learning).

I Further study of graph representation and formal synthesis problem.

I Admittance matrix pivots (big data, graph clustering).

7M. Capek, L. Jelinek, and M. Gustafsson, “Shape synthesis based on topology sensitivity,” , 2018,
submitted, arxiv: 1808.02479. [Online]. Available: https://arxiv.org/abs/1808.02479
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Questions

Questions?

Miloslav Čapek
miloslav.capek@fel.cvut.cz

January 16, 2019
version 1.1

The presentation is available at I capek.elmag.org

Acknowledgment: This work was supported by the Ministry of Education, Youth and Sports through
the project CZ.02.2.69/0.0/0.0/16 027/0008465.
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Questions

Moving in the Solution Space
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Questions

Synthesis – Generalized Framework

Complete and general description of synthesis.

Desired quantity: Î (source current), given quantity: YΩ (source region).

Î =
(
1−YGCB

(
Z−1L + CT

BYGCB
)−1

CT
B
)
YGCFvV0

Î = (1−P)YΩV

YΩ initial system to be optimized

V excitation (external/boundary condition)

I solution to original (arbitrarily shaped) structure Ω

P (any) modification of the initial (arbitrarily shaped) structure Ω
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Questions

Computational Complexity

Characterization of the synthesis problem

Number of inner edges N

Levels of the tree N + 1

Total number of solutions 2N

Number of connections down N − n
Number of connections up n

Number of nodes at the n-th level
N !

n! (N − n)!
=

(
N

n

)

Number of connections down from the n-th level n

(
N

n

)
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