Optimal Currents and Shape Synthesis in Electromagnetism Part II – Topology Sensitivity

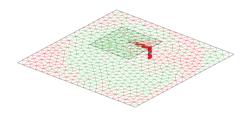
Miloslav Čapek¹

¹Department of Electromagnetic Field, Czech Technical University in Prague, Czech Republic

miloslav.capek@fel.cvut.cz

January 16, 2019 Departmental seminar Chalmers University of Technology Outline

- 1. Shape Synthesis
- 2. Discretization of a Model
- 3. Shape Synthesis Techniques
- 4. Topology Sensitivity: Motivation
- 5. Topology Sensitivity: Derivation
- 6. Topology Sensitivity: Examples
- 7. Conversion to a Graph: Greedy Algorithm
- 8. Concluding Remarks and Future Work



Topology sensitivity of a PIFA.

This talk concerns:

- electric currents in vacuum,
- ► time-harmonic quantities, *i.e.*, $\mathcal{A}(\mathbf{r}, t) = \operatorname{Re} \{ \mathbf{A}(\mathbf{r}) \exp(j\omega t) \}.$

Analysis \times Synthesis

Analysis \times Synthesis

Analysis (\mathcal{A})

 Shape Ω is given, BCs are known, determine EM quantities.

 $g = \mathcal{L} \left\{ \boldsymbol{J} \left(\boldsymbol{r} \right) \right\} = \mathcal{A} f$

$$f \equiv \left\{ \Omega, \boldsymbol{E}^{\mathrm{i}} \right\}, \, g \equiv \left\{ p \right\}$$

Analysis \times Synthesis

Analysis (\mathcal{A})

 Shape Ω is given, BCs are known, determine EM quantities.

$g = \mathcal{L} \left\{ \boldsymbol{J} \left(\boldsymbol{r} \right) \right\} = \mathcal{A} f$

Synthesis $(\mathcal{S} \equiv \mathcal{A}^{-1})$

EM behavior is specified, neither Ω nor BCs are known.

$$f = \mathcal{S}g = \mathcal{A}^{-1}g$$

$$f \equiv \left\{ \Omega, \boldsymbol{E}^{\mathrm{i}} \right\}, \, g \equiv \left\{ p \right\}$$

Synthesis

How to get
$$f = \mathcal{A}^{-1}g$$
?

Questions inherently related to synthesis are¹ $(f \equiv \{\Omega, E^i\}, g \equiv \{p_i\})$

- 1. Can g be chosen arbitrary?
- 2. If g is such that there exists a solution f, is that solution unique?
- 3. If g is known only approximately, which is always the case, is the corresponding solution for f close to the exact one?
- 4. If f is not exactly realized what effect will this have on $\mathcal{A}f$?

¹G. Deschamps and H. Cabayan, "Antenna synthesis and solution of inverse problems by regularization methods," *IEEE Transactions on Antennas and Propagation*, vol. 20, no. 3, pp. 268–274, 1972. DOI: 10.1109/tap.1972.1140197. [Online]. Available: https://doi.org/10.1109/tap.1972.1140197

Synthesis

How to get
$$f = \mathcal{A}^{-1}g$$
?

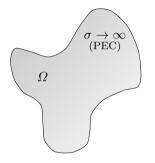
Questions inherently related to synthesis are¹ $(f \equiv \{\Omega, E^i\}, g \equiv \{p_i\})$

- 1. Can g be chosen arbitrary? No.
- 2. If g is such that there exists a solution f, is that solution unique? No.
- 3. If g is known only approximately, which is always the case, is the corresponding solution for f close to the exact one? No.
- 4. If f is not exactly realized what effect will this have on $\mathcal{A}f$? Potentially huge.

Generally, infinitely many possibilities and local minima \rightarrow need for shape discretization.

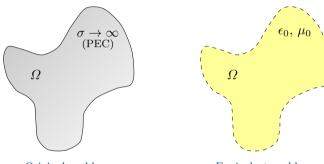
¹G. Deschamps and H. Cabayan, "Antenna synthesis and solution of inverse problems by regularization methods," *IEEE Transactions on Antennas and Propagation*, vol. 20, no. 3, pp. 268–274, 1972. DOI: 10.1109/tap.1972.1140197. [Online]. Available: https://doi.org/10.1109/tap.1972.1140197

Discretization



Original problem.

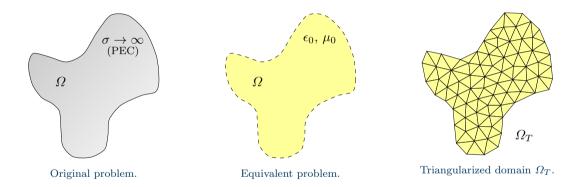
Discretization



Original problem.

Equivalent problem.

Discretization



Structure $\Omega \to \Omega_T$, current density in vacuum $\boldsymbol{J}(\boldsymbol{r}), \, \boldsymbol{r} \in \Omega_T$.

Operators Represented In RWG Basis Functions

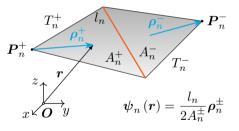
Starting point in this work is a given discretization into T triangles t_i , $\Omega_T = \bigcup_{i=1}^T t_i$.

Operators Represented In RWG Basis Functions

Starting point in this work is a given discretization into T triangles t_i , $\Omega_T = \bigcup_{i=1}^{T} t_i$. RWG basis functions $\{\psi_n(\mathbf{r})\}$ are applied as

$$oldsymbol{J}\left(oldsymbol{r}
ight)pprox\sum_{n=1}^{N}I_{n}oldsymbol{\psi}_{n}\left(oldsymbol{r}
ight),$$

where N is the number of all inner edges.



RWG basis function $\boldsymbol{\psi}_{n}\left(\boldsymbol{r}\right)$.

Operators Represented In RWG Basis Functions

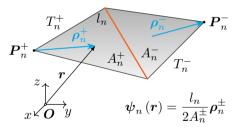
Starting point in this work is a given discretization into T triangles t_i , $\Omega_T = \bigcup_{i=1}^{l} t_i$. RWG basis functions $\{\psi_n(\mathbf{r})\}$ are applied as

$$oldsymbol{J}\left(oldsymbol{r}
ight)pprox\sum_{n=1}^{N}I_{n}oldsymbol{\psi}_{n}\left(oldsymbol{r}
ight),$$

where N is the number of all inner edges.

Matrix representation of the operators used

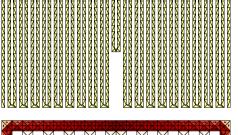
$$\langle \boldsymbol{J}, \mathcal{A} \boldsymbol{J} \rangle = [I_m^* \langle \boldsymbol{\psi}_m, \mathcal{A} \boldsymbol{\psi}_n \rangle I_n] = \mathbf{I}^{\mathrm{H}} \mathbf{A} \mathbf{I}.$$

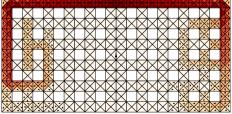


RWG basis function $\boldsymbol{\psi}_{n}\left(\boldsymbol{r}\right)$.

Shape Synthesis: Properties and Approaches

- 1. Designers' skill and knowledge.
- 2. Parametric sweeps.
- 3. Heuristic algorithms (global optimization).
- 4. Topology optimization (local optimization).





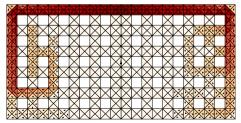
Shape Synthesis: Properties and Approaches

- 1. Designers' skill and knowledge.
 - ▶ Nonintuitive/complex design?
- 2. Parametric sweeps.
 - ▶ What parameters? How many?
- 3. Heuristic algorithms (global optimization).
 - ▶ Convergence. No-free-lunch. "Solution."
- 4. Topology optimization (local optimization).
 - ▶ This talk...partly.

Optimal solution:

▶ Combination of all approaches.





Topology Optimization

minimize
$$f = \int_{\Omega} F(\rho(\mathbf{r})) \, \mathrm{d}V$$

subject to $\int_{\Omega} \rho \, \mathrm{d}V - V_0 \le 0$

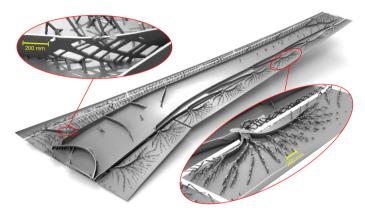
- ▶ min. compliance \rightarrow max. stiffness
- $\blacktriangleright\,$ solved within FEM
- ▶ mesh dependence
- ▶ instability (chess board)

Topology Optimization

minimize
$$f = \int_{\Omega} F(\rho(\boldsymbol{r})) \, \mathrm{d}V$$

subject to $\int_{\Omega} \rho \, \mathrm{d}V - V_0 \le 0$

- ▶ min. compliance \rightarrow max. stiffness
- ▶ solved within FEM
- ▶ mesh dependence
- ▶ instability (chess board)



 $1216\times 3456\times 256\approx 1.1\cdot 10^9$ unknowns, FEM².

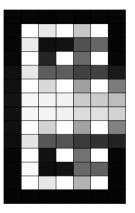
²N. Aage, E. Andreassen, B. S. Lazarov, *et al.*, "Giga-voxel computational morphogenesis for structural design," *Nature*, vol. 550, pp. 84–86, 2017. DOI: 10.1038/nature23911

Topology Optimization in EM

State-of-the-art in mechanics, serious problems in $\mathrm{E}\mathrm{M}^3$

- "gray" elements, rounding yields different results,
- ▶ numerical oscillation (chessboard),
- ▶ more sensitive to local minima (current paths?),
- ▶ threshold function for MoM.

Fundamental difference between EM vector field and stiffness in mechanics?



Histogram of the best candidates found for $\min_{\mathbf{I}} Q$, NSGA-II.

³S. Liu, Q. Wang, and R. Gao, "A topology optimization method for design of small GPR antennas," *Struct. Multidisc. Optim.*, vol. 50, pp. 1165–1174, 2014. DOI: 10.1007/s00158-014-1106-y

Miloslav Čapek

Optimal Currents and Shape Synthesis in Electromagnetism

Topology Sensitivity

Idea behind this work

Let us accept NP-hardness of the problem, do brute force, but do it cleverly...

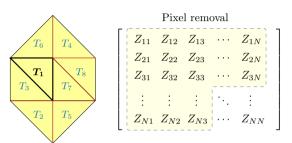
Idea behind this work

Let us accept NP-hardness of the problem, do brute force, but do it cleverly...

- ▶ Inspired by pixeling⁴, but RWG functions are the unknowns (T vs. N unknowns).
- Fixed mesh grid Ω_T : operators calculated once, results comparable with the bounds.
- ► Woodbury identity employed: get rid of repetitive matrix inversion!
- ▶ Feeding is specified at the beginning.

⁴Y. Rahmat-Samii, J. M. Kovitz, and H. Rajagopalan, "Nature-inspired optimization techniques in communication antenna design," *Proc. IEEE*, vol. 100, no. 7, pp. 2132–2144, 2012. DOI: 10.1109/JPR0C.2012.2188489

Comparison of Pixeling Techniques

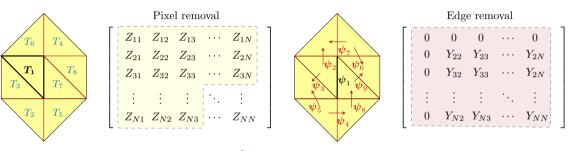


Classical pixeling removes metallic patches⁵.

 $(\mathbf{Z}_{\mathbf{G}} + \mathbf{Z}_{\mathrm{L}}) \mathbf{I} = \mathbf{Z}\mathbf{I} = \mathbf{V}$

⁵Y. Rahmat-Samii, J. M. Kovitz, and H. Rajagopalan, "Nature-inspired optimization techniques in communication antenna design," *Proc. IEEE*, vol. 100, no. 7, pp. 2132–2144, 2012. DOI: 10.1109/JPR0C.2012.2188489

Comparison of Pixeling Techniques



Classical pixeling removes metallic patches⁵.

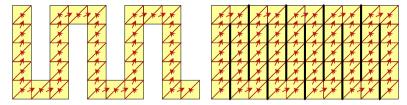
Proposed basis function removal.

 $\mathbf{I} = \mathbf{Z}^{-1}\mathbf{V} = \mathbf{Y}\mathbf{V}$

 $(\mathbf{Z}_{\mathbf{G}} + \mathbf{Z}_{\mathrm{L}}) \, \mathbf{I} = \mathbf{Z} \mathbf{I} = \mathbf{V}$

⁵Y. Rahmat-Samii, J. M. Kovitz, and H. Rajagopalan, "Nature-inspired optimization techniques in communication antenna design," *Proc. IEEE*, vol. 100, no. 7, pp. 2132–2144, 2012. DOI: 10.1109/JPR0C.2012.2188489

Pixeling and Edge Removal



Comparison of the longest meander possible for classical pixeling and edge removal.

• "Infinitesimally" small perturbation of a structure Ω_T is a removal of RWG edge⁶.

⁶M. Capek, L. Jelinek, and M. Gustafsson, "Shape synthesis based on topology sensitivity," , 2018, submitted, arxiv: 1808.02479. [Online]. Available: https://arxiv.org/abs/1808.02479

Shape Synthesis: Rigorous Definition

For a given impedance matrix $\mathbf{Z} \in \mathbb{C}^{N \times N}$, matrices \mathbf{A} , $\{\mathbf{B}_i\}$, $\{\mathbf{B}_j\}$, given excitation vector $\mathbf{V} \in \mathbb{C}^N$, found a vector \boldsymbol{x} such that

minimize
$$\mathbf{I}^{H}\mathbf{A}(\boldsymbol{x})\mathbf{I}$$

subject to $\mathbf{I}^{H}\mathbf{B}_{i}(\boldsymbol{x})\mathbf{I} = p_{i}$
 $\mathbf{I}^{H}\mathbf{B}_{j}(\boldsymbol{x})\mathbf{I} \leq p_{j}$
 $\mathbf{Z}(\boldsymbol{x})\mathbf{I} = \mathbf{V}$
 $\boldsymbol{x} \in \{0,1\}^{N}$

- ▶ structure perturbation
- combinatorial optimization
- $\blacktriangleright \ \widehat{\mathbf{A}} = \left(\boldsymbol{x} * \boldsymbol{x}^{\mathrm{T}} \right) \otimes \mathbf{A}$

Shape Synthesis: Rigorous Definition

For a given impedance matrix $\mathbf{Z} \in \mathbb{C}^{N \times N}$, matrices \mathbf{A} , $\{\mathbf{B}_i\}$, $\{\mathbf{B}_j\}$, given excitation vector $\mathbf{V} \in \mathbb{C}^N$, found a vector \boldsymbol{x} such that

minimize
$$\mathbf{I}^{H}\mathbf{A}(\boldsymbol{x})\mathbf{I}$$

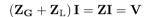
subject to $\mathbf{I}^{H}\mathbf{B}_{i}(\boldsymbol{x})\mathbf{I} = p_{i}$
 $\mathbf{I}^{H}\mathbf{B}_{j}(\boldsymbol{x})\mathbf{I} \le p_{j}$
 $\mathbf{Z}(\boldsymbol{x})\mathbf{I} = \mathbf{V}$
 $\boldsymbol{x} \in \{0,1\}^{N}$

- structure perturbation
- combinatorial optimization
- $\blacktriangleright \ \widehat{\mathbf{A}} = \left(\boldsymbol{x} * \boldsymbol{x}^{\mathrm{T}} \right) \otimes \mathbf{A}$

- minimize $\mathbf{I}^{\mathrm{H}}\mathbf{A}(\boldsymbol{x})\mathbf{I}$ subject to $\mathbf{I}^{\mathrm{H}}\mathbf{B}_{i}(\boldsymbol{x})\mathbf{I} = p_{i}$ $\mathbf{I}^{\mathrm{H}}\mathbf{B}_{j}(\boldsymbol{x})\mathbf{I} \leq p_{j}$ $\mathbf{Z}(\boldsymbol{x})\mathbf{I} = \mathbf{V}$ $\boldsymbol{x} \in [0, 1]^{N}$
- ▶ material perturbation
- relaxation of the combinatorial approach \hat{i}

$$\blacktriangleright \ \widehat{A}_{ii} = A_{ii} + x_i R_0$$

$$(\mathbf{Z}_{\mathbf{G}} + \mathbf{Z}_{\mathrm{L}})\mathbf{I} = \mathbf{Z}\mathbf{I} = \mathbf{V}$$

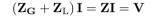


Lumped element with resistivity R_{∞}

$$Z_{\mathrm{L},nn} = R_{\infty} \quad \Leftrightarrow \quad n \in \mathcal{B}$$

Example:

$$\mathcal{B} = \{1, 3\}$$



Lumped element with resistivity R_{∞}

$$Z_{\mathrm{L},nn} = R_{\infty} \quad \Leftrightarrow \quad n \in \mathcal{B}$$

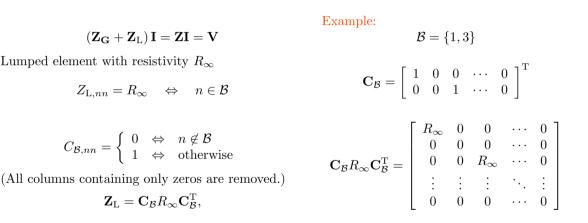
$$C_{\mathcal{B},nn} = \begin{cases} 0 \iff n \notin \mathcal{B} \\ 1 \iff \text{otherwise} \end{cases}$$

(All columns containing only zeros are removed.)

Example:

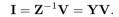
$$\mathbf{C}_{\mathcal{B}} = \left[\begin{array}{cccc} 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \end{array} \right]$$

 $\mathcal{B} = \{1, 3\}$



Definitions

$$\mathbf{Z} = \mathbf{Z}_{\mathbf{G}} + \mathbf{Z}_{\mathrm{L}} = \mathbf{Z}_{\mathbf{G}} + \mathbf{C}_{\mathcal{B}} R_{\infty} \mathbf{C}_{\mathcal{B}}^{\mathrm{T}},$$



Definitions

$$\mathbf{Z} = \mathbf{Z}_{\mathbf{G}} + \mathbf{Z}_{\mathbf{L}} = \mathbf{Z}_{\mathbf{G}} + \mathbf{C}_{\mathcal{B}} R_{\infty} \mathbf{C}_{\mathcal{B}}^{\mathrm{T}},$$

$$\mathbf{I} = \mathbf{Z}^{-1}\mathbf{V} = \mathbf{Y}\mathbf{V}.$$

Sherman-Morrison-Woodbury formula

$$(\mathbf{A} + \mathbf{EBF})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{E} (\mathbf{B}^{-1} + \mathbf{FA}^{-1}\mathbf{E})^{-1}\mathbf{FA}^{-1}$$

Definitions

$$\mathbf{Z} = \mathbf{Z}_{\mathbf{G}} + \mathbf{Z}_{\mathbf{L}} = \mathbf{Z}_{\mathbf{G}} + \mathbf{C}_{\mathcal{B}} R_{\infty} \mathbf{C}_{\mathcal{B}}^{\mathrm{T}},$$

$$\mathbf{I} = \mathbf{Z}^{-1}\mathbf{V} = \mathbf{Y}\mathbf{V}.$$

Sherman-Morrison-Woodbury formula

$$(\mathbf{A} + \mathbf{EBF})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{E} (\mathbf{B}^{-1} + \mathbf{FA}^{-1}\mathbf{E})^{-1}\mathbf{FA}^{-1}$$

$$\mathbf{Y} = \mathbf{Z}^{-1} = \mathbf{Z}_{\mathbf{G}}^{-1} - \mathbf{Z}_{\mathbf{G}}^{-1} \mathbf{C}_{\mathcal{B}} \left(\frac{1}{R_{\infty}} \mathbf{1}_{D} + \mathbf{C}_{\mathcal{B}}^{\mathrm{T}} \mathbf{Z}_{\mathbf{G}}^{-1} \mathbf{C}_{\mathcal{B}} \right)^{-1} \mathbf{C}_{\mathcal{B}}^{\mathrm{T}} \mathbf{Z}_{\mathbf{G}}^{-1}$$

Definitions

$$\mathbf{Z} = \mathbf{Z}_{\mathbf{G}} + \mathbf{Z}_{\mathbf{L}} = \mathbf{Z}_{\mathbf{G}} + \mathbf{C}_{\mathcal{B}} R_{\infty} \mathbf{C}_{\mathcal{B}}^{\mathrm{T}},$$

$$\mathbf{I} = \mathbf{Z}^{-1}\mathbf{V} = \mathbf{Y}\mathbf{V}.$$

Sherman-Morrison-Woodbury formula

$$(\mathbf{A} + \mathbf{EBF})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{E} (\mathbf{B}^{-1} + \mathbf{FA}^{-1}\mathbf{E})^{-1}\mathbf{FA}^{-1}$$

$$\mathbf{Y} = \mathbf{Z}^{-1} = \mathbf{Z}_{\mathbf{G}}^{-1} - \mathbf{Z}_{\mathbf{G}}^{-1} \mathbf{C}_{\mathcal{B}} \left(\frac{1}{R_{\infty}} \mathbf{1}_{D} + \mathbf{C}_{\mathcal{B}}^{\mathrm{T}} \mathbf{Z}_{\mathbf{G}}^{-1} \mathbf{C}_{\mathcal{B}} \right)^{-1} \mathbf{C}_{\mathcal{B}}^{\mathrm{T}} \mathbf{Z}_{\mathbf{G}}^{-1}$$

For $\mathbf{Z}_{\mathbf{G}}^{-1} = \mathbf{Y}_{\mathbf{G}}$ and $R_{\infty} \to \infty$

$$\mathbf{Y} = \mathbf{Y}_{\mathbf{G}} - \mathbf{Y}_{\mathbf{G}} \mathbf{C}_{\mathcal{B}} \left(\mathbf{C}_{\mathcal{B}}^{\mathrm{T}} \mathbf{Y}_{\mathbf{G}} \mathbf{C}_{\mathcal{B}} \right)^{-1} \mathbf{C}_{\mathcal{B}}^{\mathrm{T}} \mathbf{Y}_{\mathbf{G}}.$$

Simplification With Indexing Property of Matrix $C_{\mathcal{B}}$

$$\mathbf{Y} = \mathbf{Y}_{\mathbf{G}} - \mathbf{Y}_{\mathbf{G}} \mathbf{C}_{\mathcal{B}} \left(\mathbf{C}_{\mathcal{B}}^{\mathrm{T}} \mathbf{Y}_{\mathbf{G}} \mathbf{C}_{\mathcal{B}} \right)^{-1} \mathbf{C}_{\mathcal{B}}^{\mathrm{T}} \mathbf{Y}_{\mathbf{G}}.$$

Simplification With Indexing Property of Matrix $C_{\mathcal{B}}$

$$\mathbf{Y} = \mathbf{Y}_{\mathbf{G}} - \mathbf{Y}_{\mathbf{G}} \mathbf{C}_{\mathcal{B}} \left(\mathbf{C}_{\mathcal{B}}^{\mathrm{T}} \mathbf{Y}_{\mathbf{G}} \mathbf{C}_{\mathcal{B}} \right)^{-1} \mathbf{C}_{\mathcal{B}}^{\mathrm{T}} \mathbf{Y}_{\mathbf{G}}.$$

For one (*n*-th) edge removed, $|\mathcal{B}| = 1$:

$$\mathbf{Y}_{\mathbf{G}}\mathbf{C}_{\mathcal{B}} = \mathbf{y}_{\mathbf{G},n}, \qquad \left(\mathbf{C}_{\mathcal{B}}^{\mathrm{T}}\mathbf{Y}_{\mathbf{G}}\mathbf{C}_{\mathcal{B}}\right)^{-1} = \frac{1}{Y_{nn}}, \qquad \mathbf{C}_{\mathcal{B}}^{\mathrm{T}}\mathbf{Y}_{\mathbf{G}} = \mathbf{y}_{\mathbf{G},n}^{\mathrm{T}}.$$

Simplification With Indexing Property of Matrix $\mathbf{C}_{\mathcal{B}}$

$$\mathbf{Y} = \mathbf{Y}_{\mathbf{G}} - \mathbf{Y}_{\mathbf{G}} \mathbf{C}_{\mathcal{B}} \left(\mathbf{C}_{\mathcal{B}}^{\mathrm{T}} \mathbf{Y}_{\mathbf{G}} \mathbf{C}_{\mathcal{B}} \right)^{-1} \mathbf{C}_{\mathcal{B}}^{\mathrm{T}} \mathbf{Y}_{\mathbf{G}}.$$

For one (*n*-th) edge removed, $|\mathcal{B}| = 1$:

$$\mathbf{Y}_{\mathbf{G}}\mathbf{C}_{\mathcal{B}} = \mathbf{y}_{\mathbf{G},n}, \qquad \left(\mathbf{C}_{\mathcal{B}}^{\mathrm{T}}\mathbf{Y}_{\mathbf{G}}\mathbf{C}_{\mathcal{B}}\right)^{-1} = \frac{1}{Y_{nn}}, \qquad \mathbf{C}_{\mathbf{G}}^{\mathrm{T}}\mathbf{Y}_{\mathbf{G}}\mathbf{C}_{\mathcal{B}}$$

$$\mathbf{C}_{\mathcal{B}}^{\mathrm{T}}\mathbf{Y}_{\mathbf{G}} = \mathbf{y}_{\mathbf{G},n}^{\mathrm{T}}.$$

Notice $\mathbf{C}_{\mathcal{B}}$ is indexing matrix (MATLAB) only...

$$\mathbf{Y} = \mathbf{Y}_{\mathbf{G}} - \frac{\mathbf{y}_{\mathbf{G},n}\mathbf{y}_{\mathbf{G},n}^{\mathrm{T}}}{Y_{nn}}.$$

Incorporation of Fixed and Localized Feeding

Imagine further, that only one (f-th) edge is fed

$$\mathbf{V}_f = V_0 \begin{bmatrix} 0 & \cdots & l_f & \cdots & 0 \end{bmatrix}^{\mathrm{T}}.$$

Incorporation of Fixed and Localized Feeding

Imagine further, that only one (f-th) edge is fed

$$\mathbf{V}_f = V_0 \begin{bmatrix} 0 & \cdots & l_f & \cdots & 0 \end{bmatrix}^{\mathrm{T}}.$$

$$\mathbf{I}_{fn} = \left(\mathbf{Y}_{\mathbf{G}} - \frac{\mathbf{y}_{\mathbf{G},n}\mathbf{y}_{\mathbf{G},n}^{\mathrm{T}}}{Y_{nn}}\right)\mathbf{V}_{f} = \dots = \mathbf{I}_{f} - \left(\frac{l_{f}l_{n}}{l_{n}^{2}}\frac{Y_{fn}}{Y_{nn}}\right)V_{0}l_{n}\mathbf{y}_{\mathbf{G},n} = \mathbf{I}_{f} + \zeta_{fn}\mathbf{I}_{n},$$

with $\mathbf{I}_f = \mathbf{Y}_{\mathbf{G}} \mathbf{V}_f$ and

$$\zeta_{ij} = -\frac{l_i l_j}{l_j^2} \frac{Y_{ij}}{Y_{jj}} = -\frac{Z_{\mathrm{in},jj}}{Z_{\mathrm{in},ij}}.$$

Incorporation of Fixed and Localized Feeding

Imagine further, that only one (f-th) edge is fed

$$\mathbf{V}_f = V_0 \begin{bmatrix} 0 & \cdots & l_f & \cdots & 0 \end{bmatrix}^{\mathrm{T}}.$$

$$\mathbf{I}_{fn} = \left(\mathbf{Y}_{\mathbf{G}} - \frac{\mathbf{Y}_{\mathbf{G},n}\mathbf{Y}_{\mathbf{G},n}^{\mathrm{T}}}{Y_{nn}}\right)\mathbf{V}_{f} = \dots = \mathbf{I}_{f} - \left(\frac{l_{f}l_{n}}{l_{n}^{2}}\frac{Y_{fn}}{Y_{nn}}\right)V_{0}l_{n}\mathbf{y}_{\mathbf{G},n} = \mathbf{I}_{f} + \zeta_{fn}\mathbf{I}_{n},$$

with $\mathbf{I}_f = \mathbf{Y}_{\mathbf{G}} \mathbf{V}_f$ and

$$\zeta_{ij} = -\frac{l_i l_j}{l_j^2} \frac{Y_{ij}}{Y_{jj}} = -\frac{Z_{\mathrm{in},jj}}{Z_{\mathrm{in},ij}}.$$

This is equivalent to a specific two-port feeding

$$\mathbf{V} = V_0 \begin{bmatrix} 0 & \dots & l_f & \dots & \zeta_{fn} l_n & \dots & 0 \end{bmatrix}^{\mathrm{T}}.$$

Topology Sensitivity

All potential removals at once:

$$\mathbf{I}_{f\mathcal{B}} = \begin{bmatrix} \mathbf{I}_f + \zeta_{f1}\mathbf{I}_1 & \cdots & \mathbf{I}_f + \zeta_{fN}\mathbf{I}_N \end{bmatrix}.$$

Topology Sensitivity

All potential removals at once:

$$\mathbf{I}_{f\mathcal{B}} = \begin{bmatrix} \mathbf{I}_f + \zeta_{f1}\mathbf{I}_1 & \cdots & \mathbf{I}_f + \zeta_{fN}\mathbf{I}_N \end{bmatrix}.$$

An antenna observable defined as quadratic form

$$x\left(\mathbf{I}\right) = \frac{\mathbf{I}^{\mathrm{H}}\mathbf{A}\mathbf{I}}{\mathbf{I}^{\mathrm{H}}\mathbf{B}\mathbf{I}}.$$

is calculated with a Hadamard product (vectorization)

$$\mathbf{x}\left(\mathbf{I}_{f\mathcal{B}}\right) = \mathrm{diag}\left(\mathbf{I}_{f\mathcal{B}}^{\mathrm{H}}\mathbf{A}\mathbf{I}_{f\mathcal{B}}\right) \oslash \mathrm{diag}\left(\mathbf{I}_{f\mathcal{B}}^{\mathrm{H}}\mathbf{B}\mathbf{I}_{f\mathcal{B}}\right).$$

Topology Sensitivity

All potential removals at once:

$$\mathbf{I}_{f\mathcal{B}} = \begin{bmatrix} \mathbf{I}_f + \zeta_{f1}\mathbf{I}_1 & \cdots & \mathbf{I}_f + \zeta_{fN}\mathbf{I}_N \end{bmatrix}.$$

An antenna observable defined as quadratic form

$$x\left(\mathbf{I}\right) = \frac{\mathbf{I}^{\mathrm{H}}\mathbf{A}\mathbf{I}}{\mathbf{I}^{\mathrm{H}}\mathbf{B}\mathbf{I}}.$$

is calculated with a Hadamard product (vectorization)

$$\mathbf{x}\left(\mathbf{I}_{f\mathcal{B}}\right) = \operatorname{diag}\left(\mathbf{I}_{f\mathcal{B}}^{\mathrm{H}}\mathbf{A}\mathbf{I}_{f\mathcal{B}}\right) \oslash \operatorname{diag}\left(\mathbf{I}_{f\mathcal{B}}^{\mathrm{H}}\mathbf{B}\mathbf{I}_{f\mathcal{B}}\right).$$

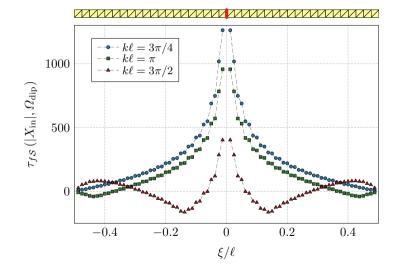
Finally, topology sensitivity is defined here as

$$\boldsymbol{\tau}_{f\mathcal{B}}(x,\Omega_{T}) = \mathbf{x}\left(\mathbf{I}_{f\mathcal{B}}\right) - x\left(\mathbf{I}_{f}\right) \approx \nabla \boldsymbol{x}\left(\mathbf{I}_{f}\right).$$

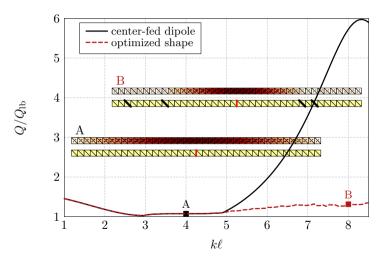
Miloslav Čapek

Topology Sensitivity: Examples

Example: Thin-strip Dipole – Input Reactance



Example: Thin-strip Dipole – Q-factor

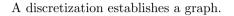


Radiation Q-factor of center-fed dipole Ω_{dip} , discretized into N = 79 basis functions.

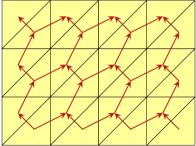
Miloslav Čapek

Optimal Currents and Shape Synthesis in Electromagnetism

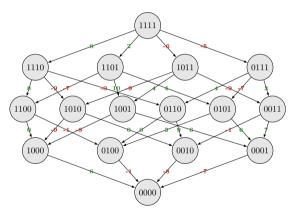
Greedy Step



 $G\left(V,E\right) = G\left(\mathbf{P},E\right) \to \left\{T_{i}\right\} \to \left\{\psi_{n}\left(r\right)\right\}$



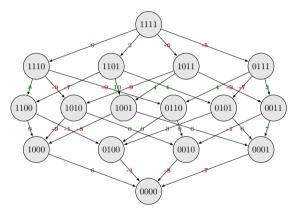
Graph Representation: Reduction to Tree



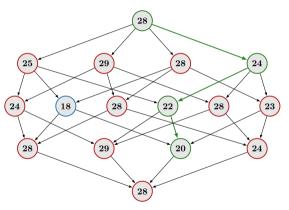
Synthesis for N = 4 as a directional binary tree.

Conversion to a Graph: Greedy Algorithm

Graph Representation: Reduction to Tree



Synthesis for N = 4 as a directional binary tree.



Greedy algorithm in directional graph.

Greedy Algorithm

One gradient-based search through the entire tree (the most pessimistic run):

- ▶ max (N-1) series
- ▶ $N(N-1)(N-2)\cdots = N!$ evaluations

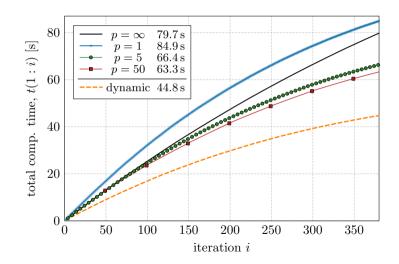
Shermann-Morrison-Woodbury: N - n speed-up at every tree level

Note of solvability of the problem

Problem is not convex \rightarrow combination of global and local algorithms.

Greedy Algorithm – Example: Rectangular Plate

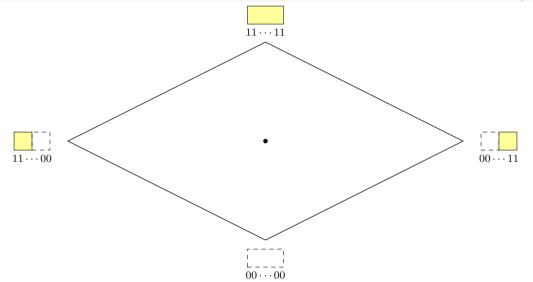
Compression of the Problem



Number of Evaluated Antennas and Computational Time

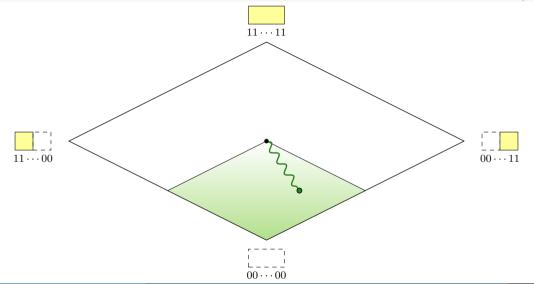
	plate (8×4)	plate (14×7)	sphere
electrical size (ka)	0.5	0.5	0.5
basis functions (N)	180	567	900
number of iterations (I)	71	279	380
evaluated antennas	10332	119420	270129
realized $Q/Q_{\rm lb}$	1.57	1.45	1.51
edge removal $(p = \infty)$	$0.30\mathrm{s}$	$23.5\mathrm{s}$	$79.7\mathrm{s}$
edge removal $(p = 50)$	$0.28\mathrm{s}$	19.4	63.6 s
edge removal $(p = 1)$	$0.43\mathrm{s}$	$23.3\mathrm{s}$	$84.9\mathrm{s}$
classical pixel removal	$10\mathrm{s}$	${f 1437 m s}$	$10500\mathrm{s}$

Moving in the Solution Space, Part #1



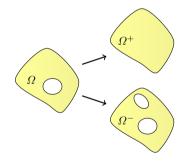
Miloslav Čapek

Moving in the Solution Space, Part #1



Miloslav Čapek

Shape Reconstruction



Adding and removing DOF.

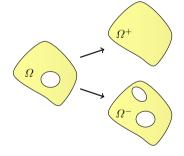
Shape Reconstruction

▶ Basis functions can be added back (shape reconstruction).

$$[\mathbf{I}_{\mathcal{E}\cup\mathcal{B}}] = \mathbf{C}_{\mathcal{E}\cup b} \begin{bmatrix} \mathbf{y}_f + \frac{x_{f1}}{z_1} \mathbf{x}_1 & \cdots & \mathbf{y}_f + \frac{x_{fb}}{z_b} \mathbf{x}_b & \cdots \\ -\frac{x_{f1}}{z_1} & \cdots & -\frac{x_{fb}}{z_b} & \cdots \end{bmatrix} l_f V_0$$

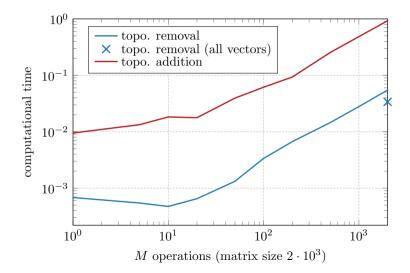
where

$$\mathbf{x}_b = \mathbf{Y}\mathbf{z}_b, \quad z_b = Z_{bb} - \mathbf{z}_b^{\mathrm{T}}\mathbf{x}_b,$$

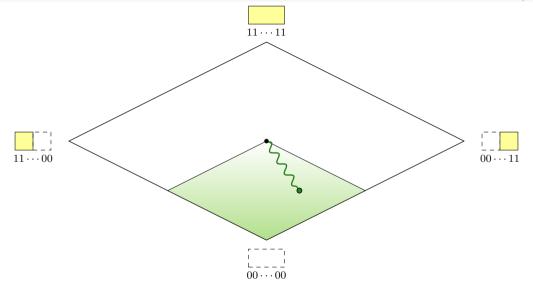


Adding and removing DOF.

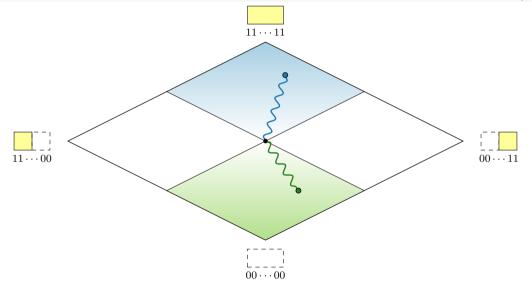
Price to Pay for Reconstruction



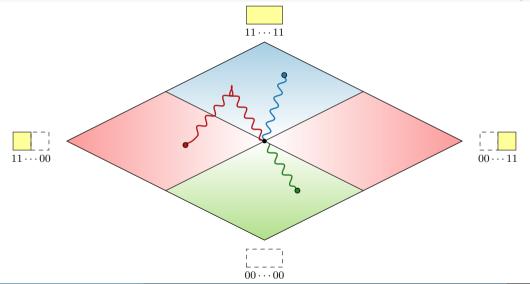
Moving in the Solution Space, Part #2



Moving in the Solution Space, Part #2

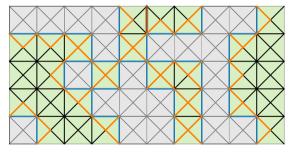


Moving in the Solution Space, Part #2



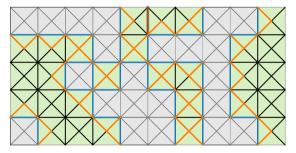
Miloslav Čapek

Nearest Neighbor (NN) Search

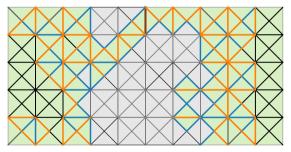


An initial sample of topology sensitivity investigation.

Nearest Neighbor (NN) Search



An initial sample of topology sensitivity investigation.

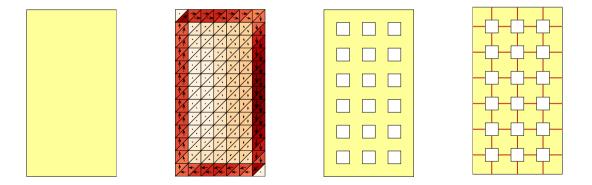


The final sample resulting from a (NN) search.

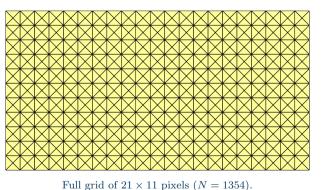
Live demonstration in MATLAB.

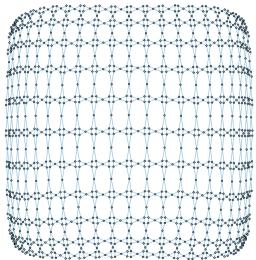
All Approaches to Synthesis at Once

Do not find an approximative solution of the exact model but, instead, find an exact solution of the approximate model.

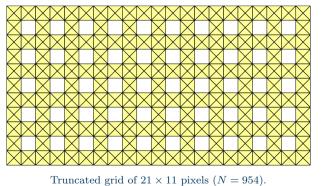


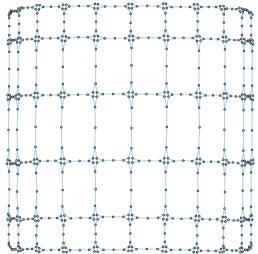
Reduction of the Complexity



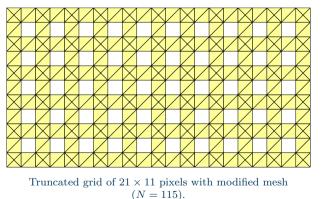


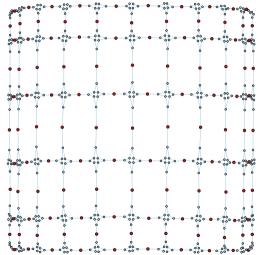
Reduction of the Complexity





Reduction of the Complexity





Concluding Remarks

What has been done⁷...

- ▶ Inversion-free structure perturbation (removal/addition).
- ▶ Evaluation of topology sensitivity, greedy algorithm.
- ▶ Vectorization and parallelization friendly algebraic derivation.

⁷M. Capek, L. Jelinek, and M. Gustafsson, "Shape synthesis based on topology sensitivity," , 2018, submitted, arxiv: 1808.02479. [Online]. Available: https://arxiv.org/abs/1808.02479

Concluding Remarks

What has been done⁷...

- ▶ Inversion-free structure perturbation (removal/addition).
- ▶ Evaluation of topology sensitivity, greedy algorithm.
- ▶ Vectorization and parallelization friendly algebraic derivation.

Topics of ongoing research

- ▶ Analysis of existing designs can they be improved?
- ▶ Add topology sensitivity into heuristic optimization as a local step.
- ▶ Utilization for "data mining" (machine learning).
- ▶ Further study of graph representation and formal synthesis problem.
- ▶ Admittance matrix pivots (big data, graph clustering).

⁷M. Capek, L. Jelinek, and M. Gustafsson, "Shape synthesis based on topology sensitivity,", 2018, submitted, arxiv: 1808.02479. [Online]. Available: https://arxiv.org/abs/1808.02479

Questions?

Miloslav Čapek miloslav.capek@fel.cvut.cz

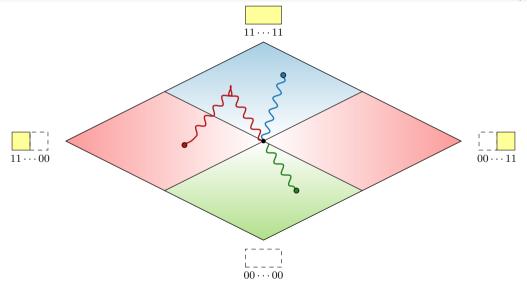
January 16, 2019 version 1.1 The presentation is available at Capek.elmag.org

Acknowledgment: This work was supported by the Ministry of Education, Youth and Sports through the project CZ.02.2.69/0.0/0.0/16_027/0008465.

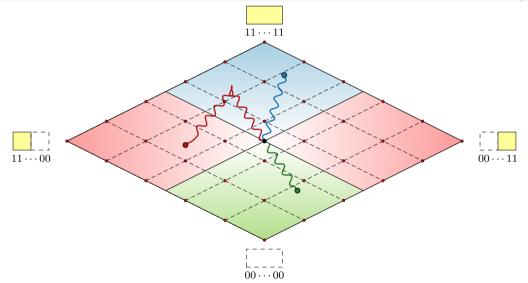
Miloslav Čapek

Optimal Currents and Shape Synthesis in Electromagnetism

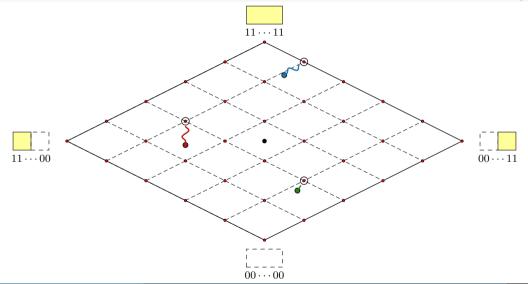
Moving in the Solution Space



Moving in the Solution Space



Moving in the Solution Space



Miloslav Čapek

Synthesis – Generalized Framework

Complete and general description of synthesis.

Desired quantity: $\hat{\mathbf{I}}$ (source current), given quantity: \mathbf{Y}_{Ω} (source region).

$$\hat{\mathbf{I}} = \left(\mathbf{1} - \mathbf{Y}_{\mathbf{G}}\mathbf{C}_{\mathcal{B}}\left(\mathbf{Z}_{\mathrm{L}}^{-1} + \mathbf{C}_{\mathcal{B}}^{\mathrm{T}}\mathbf{Y}_{\mathbf{G}}\mathbf{C}_{\mathcal{B}}\right)^{-1}\mathbf{C}_{\mathcal{B}}^{\mathrm{T}}\right)\mathbf{Y}_{\mathbf{G}}\mathbf{C}_{\mathcal{F}}\boldsymbol{v}V_{0}$$

$$\hat{\mathbf{I}} = (\mathbf{1} - \mathbf{P}) \, \mathbf{Y}_{arDeta} \mathbf{V}$$

- \mathbf{Y}_{\varOmega} initial system to be optimized
 - \mathbf{V} excitation (external/boundary condition)
 - ${\bf I}\,$ solution to original (arbitrarily shaped) structure \varOmega
 - ${\bf P}$ (any) modification of the initial (arbitrarily shaped) structure \varOmega

Computational Complexity

Characterization of the synthesis problem

Number of inner edges	N	
Levels of the tree	N+1	
Total number of solutions	2^N	
Number of connections down	N-n	
Number of connections up	n	
Number of nodes at the <i>n</i> -th level	$\frac{N!}{n! \left(N-n\right)!} = \binom{N}{n}$	
Number of connections down from the n -th level	$n\binom{N}{n}$	