Fundamental Bounds on Dissipation Factor for Wearable and Implantable Antennas

Miloslav Čapek¹, Lukáš Jelínek¹, Mats Gustafsson², and Vít Losenický¹

¹Department of Electromagnetic Field, Czech Technical University in Prague, Czech Republic miloslav.capek@fel.cvut.cz

²Department of Electrical and Information Technology, Lund University, Sweden

> October 2, 2019 ICECOM, Dubrovnik, Croatia

Outline

2 / 34

- 1. Bounds on Radiation Efficiency
- 2. Utilizing Integral Equations
- 3. Solution to QCQP Problems for Radiation Efficiency
- 4. Solution for a Spherical Shell and Scaling of the Problem
- 5. Algebraic Representation with Volumetric MoM
- 6. A New Numerical Method Hybridizing MoM & T-Matrix
- 7. Concluding Remarks

Electrically small antenna inside a circumscribing sphere of a radius a.

- Document available at capek.elmag.org.
- ▶ To see the graphics in motion, open this document in Adobe Reader!

Radiation Efficiency and Dissipation Factor

Radiation efficiency¹:

$$\eta_{
m rad} = rac{P_{
m rad}}{P_{
m rad} + P_{
m lost}} = rac{1}{1 + \delta_{
m lost}}$$

Dissipation factor² δ :

fraction of quadratic forms (can be scaled with resistivity model).

¹145-2013 – IEEE Standard for Definitions of Terms for Antennas, IEEE, 2014

(1)

3 / 34

Radiation Efficiency and Dissipation Factor

Radiation efficiency¹:

$$\eta_{\rm rad} = \frac{P_{\rm rad}}{P_{\rm rad} + P_{\rm lost}} = \frac{1}{1 + \delta_{\rm lost}}$$

Dissipation factor² δ :

$$\delta_{\rm lost} = \frac{P_{\rm lost}}{P_{\rm rad}} \tag{2}$$

▶ fraction of quadratic forms (can be scaled with resistivity model).

(

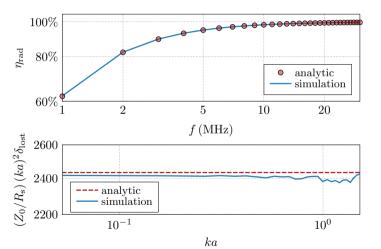
¹145-2013 – IEEE Standard for Definitions of Terms for Antennas, IEEE, 2014 ²R. F. Harrington, "Effect of antenna size on gain, bandwidth, and efficiency," J. Res. Nat. Bur. Stand., vol. 64-D, pp. 1–12, 1960

Miloslav Čapek, et al.

(1)

Radiation Efficiency and Dissipation Factor: Example

A wire dipole of length $\ell = 5 \text{ m}$ made of copper wire of 2.055 mm:



What Is This Talk About?

Questions to be investigated...

- 1. What are the fundamental bounds on radiation effiency?
- 2. What are other costs (self-resonance, trade-offs)?
- 3. Are these bounds feasible?

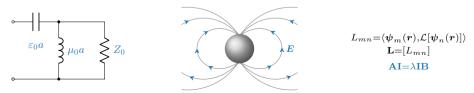
What Is This Talk About?

Questions to be investigated...

- 1. What are the fundamental bounds on radiation effiency?
- 2. What are other costs (self-resonance, trade-offs)?
- 3. Are these bounds feasible?

Tools we have:

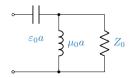
- ▶ Circuit quantities (equivalent circuits).
- ▶ Field quantities (spherical harmonics).
- ▶ Source currents (eigenvalue problems).



A Little History of the Problem...

Circuit Quantities

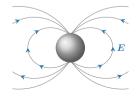
- ► Circuit quantities (equivalent circuits):
 - C. Pfeiffer, "Fundamental efficiency limits for small metallic antennas," *IEEE Trans.* Antennas Propag., vol. 65, pp. 1642–1650, 2017.
 - 2. H. L. Thal, "Radiation efficiency limits for elementary antenna shapes," *IEEE Trans.* Antennas Propag., vol. 66, no. 5, pp. 2179–2187, 2018.



A Little History of the Problem...

Field Quantities

- ▶ Field quantities (spherical harmonics):
 - R. F. Harrington, "Effect of antenna size on gain, bandwidth, and efficiency," J. Res. Nat. Bur. Stand., vol. 64-D, pp. 1–12, 1960.
 - A. Arbabi and S. Safavi-Naeini, "Maximum gain of a lossy antenna," *IEEE Trans. Antennas Propag.*, vol. 60, pp. 2–7, 2012.
 - 3. K. Fujita and H. Shirai, "Theoretical limitation of the radiation efficiency for homogenous electrically small antennas," *IEICE T. Electron.*, vol. E98C, pp. 2–7, 2015.
 - A. K. Skrivervik, M. Bosiljevac, and Z. Sipus, "Fundamental limits for implanted antennas: Maximum power density reaching free space," *IEEE Trans. Antennas Propag.*, vol. 67, no. 8, pp. 4978 –4988, 2019.



A Little History of the Problem...

Source Currents

- ► Source currents (eigenvalue problems):
 - 1. M. Uzsoky and L. Solymár, "Theory of super-directive linear arrays," Acta Physica Academiae Scientiarum Hungaricae, vol. 6, no. 2, pp. 185–205, 1956.
 - 2. R. F. Harrington, "Antenna excitation for maximum gain," *IEEE Trans. Antennas Propag.*, vol. 13, no. 6, pp. 896–903, 1965.
 - M. Gustafsson, D. Tayli, C. Ehrenborg, et al., "Antenna current optimization using MATLAB and CVX," FERMAT, vol. 15, no. 5, pp. 1–29, 2016.
 - 4. L. Jelinek and M. Capek, "Optimal currents on arbitrarily shaped surfaces," *IEEE Trans.* Antennas Propag., vol. 65, no. 1, pp. 329–341, 2017.

$$L_{mn} = \langle \boldsymbol{\psi}_{m}(\boldsymbol{r}), \mathcal{L}[\boldsymbol{\psi}_{n}(\boldsymbol{r})] \rangle$$
$$\mathbf{L} = [L_{mn}]$$
$$\mathbf{AI} = \lambda \mathbf{IB}$$

Integral Operators and Their Algebraic Representation

Radiated and reactive power:

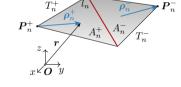
$$P_{\mathrm{rad}} + 2\mathrm{j}\omega\left(W_{\mathrm{m}} - W_{\mathrm{e}}\right) = \frac{1}{2} \langle \boldsymbol{J}\left(\boldsymbol{r}\right), \boldsymbol{\mathcal{Z}}\left[\boldsymbol{J}\left(\boldsymbol{r}\right)
ight]
angle$$

Lost power (surface resistivity model):

$$P_{ ext{lost}} = rac{1}{2} \langle oldsymbol{J}\left(oldsymbol{r}
ight), ext{Re}\left\{oldsymbol{Z_s}
ight\}oldsymbol{J}\left(oldsymbol{r}
ight)
angle$$

• The same approach as with the method of moments³ (MoM)

$$oldsymbol{J}\left(oldsymbol{r}
ight)pprox\sum_{n}I_{n}oldsymbol{\psi}_{n}\left(oldsymbol{r}
ight)$$



RWG basis function $\boldsymbol{\psi}_n$.

³R. F. Harrington, *Field Computation by Moment Methods*. Piscataway, New Jersey, United States: Wiley – IEEE Press, 1993

Algebraic Representation of Integral Operators Radiated and reactive power

$$P_{\rm rad} + 2j\omega \left(W_{\rm m} - W_{\rm e} \right) = \frac{1}{2} \langle \boldsymbol{J} \left(\boldsymbol{r} \right), \boldsymbol{\mathcal{Z}} \left[\boldsymbol{J} \left(\boldsymbol{r} \right) \right] \rangle$$
(3)

10 / 34

Algebraic Representation of Integral Operators Radiated and reactive power

$$P_{\rm rad} + 2j\omega \left(W_{\rm m} - W_{\rm e} \right) = \frac{1}{2} \langle \boldsymbol{J} \left(\boldsymbol{r} \right), \boldsymbol{\mathcal{Z}} \left[\boldsymbol{J} \left(\boldsymbol{r} \right) \right] \rangle \approx \frac{1}{2} \mathbf{I}^{\rm H} \mathbf{Z} \mathbf{I}$$
(3)

Electric Field Integral Equation⁴ (EFIE), $\mathbf{Z} = [Z_{mn}]$:

$$Z_{mn} = \int_{\Omega} \boldsymbol{\psi}_{m} \cdot \boldsymbol{\mathcal{Z}}(\boldsymbol{\psi}_{n}) \, \mathrm{d}S = \mathrm{j}kZ_{0} \int_{\Omega} \int_{\Omega} \boldsymbol{\psi}_{m}(\boldsymbol{r}_{1}) \cdot \mathbf{G}(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}) \cdot \boldsymbol{\psi}_{n}(\boldsymbol{r}_{2}) \, \mathrm{d}S_{1} \, \mathrm{d}S_{2}. \tag{4}$$

⁴W. C. Chew, M. S. Tong, and B. Hu, *Integral Equation Methods for Electromagnetic and Elastic Waves*. Morgan & Claypool, 2009

Algebraic Representation of Integral Operators Radiated and reactive power

$$P_{\rm rad} + 2j\omega \left(W_{\rm m} - W_{\rm e} \right) = \frac{1}{2} \langle \boldsymbol{J} \left(\boldsymbol{r} \right), \boldsymbol{\mathcal{Z}} \left[\boldsymbol{J} \left(\boldsymbol{r} \right) \right] \rangle \approx \frac{1}{2} \mathbf{I}^{\rm H} \mathbf{Z} \mathbf{I}$$
(3)

Electric Field Integral Equation⁴ (EFIE), $\mathbf{Z} = [Z_{mn}]$:

$$Z_{mn} = \int_{\Omega} \boldsymbol{\psi}_{m} \cdot \boldsymbol{\mathcal{Z}}(\boldsymbol{\psi}_{n}) \, \mathrm{d}\boldsymbol{S} = \mathrm{j}kZ_{0} \int_{\Omega} \int_{\Omega} \boldsymbol{\psi}_{m}(\boldsymbol{r}_{1}) \cdot \mathbf{G}(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}) \cdot \boldsymbol{\psi}_{n}(\boldsymbol{r}_{2}) \, \mathrm{d}\boldsymbol{S}_{1} \, \mathrm{d}\boldsymbol{S}_{2}. \tag{4}$$

▶ Dense, symmetric matrix.

▶ An output from PEC 2D MoM code.

⁴W. C. Chew, M. S. Tong, and B. Hu, *Integral Equation Methods for Electromagnetic and Elastic Waves*. Morgan & Claypool, 2009

Algebraic Representation of Integral Operators $_{\rm Lost\ power}$

$$P_{\text{lost}} = \frac{1}{2} \langle \boldsymbol{J} \left(\boldsymbol{r} \right), \operatorname{Re} \left\{ \boldsymbol{Z}_{\text{s}} \right\} \left[\boldsymbol{J} \left(\boldsymbol{r} \right) \right] \rangle$$
(5)

Algebraic Representation of Integral Operators $_{\rm Lost\ power}$

$$P_{\text{lost}} = \frac{1}{2} \langle \boldsymbol{J} \left(\boldsymbol{r} \right), \operatorname{Re} \left\{ \boldsymbol{Z}_{s} \right\} \left[\boldsymbol{J} \left(\boldsymbol{r} \right) \right] \rangle \approx \frac{1}{2} \mathbf{I}^{\text{H}} \mathbf{L} \mathbf{I}$$
(5)

$$L_{mn} = \int_{\Omega} \boldsymbol{\psi}_m \cdot \boldsymbol{\psi}_n \,\mathrm{d}S \tag{6}$$

Surface resistivity model:

$$Z_{\rm s} = \frac{1+{\rm j}}{\sigma\delta} \tag{7}$$

with skin depth $\delta = \sqrt{2/\omega\mu_0\sigma}$.

Algebraic Representation of Integral Operators $_{\rm Lost\ power}$

$$P_{\text{lost}} = \frac{1}{2} \langle \boldsymbol{J} \left(\boldsymbol{r} \right), \operatorname{Re} \left\{ \boldsymbol{Z}_{s} \right\} \left[\boldsymbol{J} \left(\boldsymbol{r} \right) \right] \rangle \approx \frac{1}{2} \mathbf{I}^{\text{H}} \mathbf{L} \mathbf{I}$$
(5)

$$L_{mn} = \int_{\Omega} \boldsymbol{\psi}_m \cdot \boldsymbol{\psi}_n \,\mathrm{d}S \tag{6}$$

Surface resistivity model:

$$Z_{\rm s} = \frac{1+{\rm j}}{\sigma\delta} \tag{7}$$

with skin depth $\delta = \sqrt{2/\omega\mu_0\sigma}$.

- ▶ Sparse matrix (diagonal for non-overlapping functions $\{\psi_m(r)\}$).
- ▶ The entries L_{mn} are known analytically.

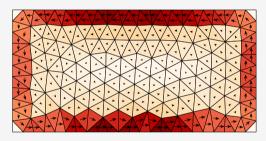
Utilizing Integral Equations

A Note: MoM Solution \times Current Impressed in Vacuum

MoM solution

Solution to $\mathbf{I} = \mathbf{Z}^{-1} \mathbf{V}$ for an incident plane wave.

Current impressed in vacuum



Solution to $\mathbf{XI}_i = \lambda_i \mathbf{RI}_i$ (the first inductive mode).

A current can be chosen completely freely, only the excitation $\mathbf{V} = \mathbf{Z}\mathbf{I}$ may not be realizable.

Fundamental Bounds as QCQP Problems

▶ The optimization problems \mathcal{P}_1 and \mathcal{P}_2 can rigorously be formulated.

Maximum radiation efficiency	Maximum self-resonant radiation efficiency
Problem \mathcal{P}_1 :	Problem \mathcal{P}_2 :
minimize $P_{\rm loss}$	minimize $P_{\rm loss}$
subject to $P_{\rm rad} = 1$	subject to $P_{\rm rad} = 1$
	$\omega \left(W_{ m m} - W_{ m e} ight) = 0$

Fundamental Bounds as QCQP Problems

- ▶ The optimization problems \mathcal{P}_1 and \mathcal{P}_2 can rigorously be formulated.
- ▶ Having quadratic forms for the physical quantities, the antenna metrics may be optimized.

Maximum radiation efficiency	Maximum self-resonant radiation efficiency
Problem \mathcal{P}_1 :	Problem \mathcal{P}_2 :
minimize $\mathbf{I}^{\mathrm{H}}\mathbf{L}\mathbf{I}$	minimize $\mathbf{I}^{H}\mathbf{L}\mathbf{I}$
subject to $\mathbf{I}^{H}\mathbf{R}\mathbf{I} = 1$	subject to $\mathbf{I}^{H}\mathbf{R}\mathbf{I} = 1$
	$\mathbf{I}^{\mathrm{H}}\mathbf{X}\mathbf{I}=0$

⁵S. Boyd and L. Vandenberghe, *Convex Optimization*. Cambridge, Great Britain: Cambridge University Press, 2004

Fundamental Bounds as QCQP Problems

- ▶ The optimization problems \mathcal{P}_1 and \mathcal{P}_2 can rigorously be formulated.
- ▶ Having quadratic forms for the physical quantities, the antenna metrics may be optimized.
- ▶ The problems \mathcal{P}_1 and \mathcal{P}_2 are quadratically constrained quadratic programs⁵ (QCQP).

Maximum radiation efficiency	Maximum self-resonant radiation efficiency
Problem \mathcal{P}_1 :	Problem \mathcal{P}_2 :
$ ext{minimize} \mathbf{I}^{ ext{H}} \mathbf{L} \mathbf{I}$	minimize $\mathbf{I}^{\mathrm{H}}\mathbf{L}\mathbf{I}$
subject to $\mathbf{I}^{\mathrm{H}}\mathbf{R}\mathbf{I} = 1$	subject to $\mathbf{I}^{\mathrm{H}}\mathbf{R}\mathbf{I} = 1$
	$\mathbf{I}^{\mathrm{H}}\mathbf{X}\mathbf{I}=0$

⁵S. Boyd and L. Vandenberghe, *Convex Optimization*. Cambridge, Great Britain: Cambridge University Press, 2004

Solution to Radiation Efficiency Bound (\mathcal{P}_1)

Lagrangian reads

$$\mathcal{L}(\lambda, \mathbf{I}) = \mathbf{I}^{\mathrm{H}} \mathbf{L} \mathbf{I} - \lambda \left(\mathbf{I}^{\mathrm{H}} \mathbf{R} \mathbf{I} - 1 \right).$$
(8)

Stationary points

$$\frac{\partial \mathcal{L}}{\mathbf{I}^{\mathrm{H}}} = \mathbf{L}\mathbf{I} - \lambda \mathbf{R}\mathbf{I} = 0 \tag{9}$$

are solution to generalized eigenvalue problem (GEP):

$$\mathbf{LI}_i = \lambda_i \mathbf{RI}_i. \tag{10}$$

Substituting a discrete set of stationary points $\{I_i, \lambda_i\}$ back to (8) and minimizing gives

$$\min_{\{\mathbf{I}_i\}} \mathcal{L}\left(\lambda, \mathbf{I}\right) = \lambda_1. \tag{11}$$

Solution to Radiation Efficiency Bound (\mathcal{P}_1)

Lagrangian reads

$$\mathcal{L}(\lambda, \mathbf{I}) = \mathbf{I}^{\mathrm{H}} \mathbf{L} \mathbf{I} - \lambda \left(\mathbf{I}^{\mathrm{H}} \mathbf{R} \mathbf{I} - 1 \right).$$
(8)

Stationary points

$$\frac{\partial \mathcal{L}}{\partial \mathbf{I}^{\mathrm{H}}} = \mathbf{L}\mathbf{I} - \lambda \mathbf{R}\mathbf{I} = 0 \tag{9}$$

are solution to generalized eigenvalue problem (GEP):

$$\mathbf{L}\mathbf{I}_i = \lambda_i \mathbf{R}\mathbf{I}_i. \tag{10}$$

Substituting a discrete set of stationary points $\{I_i, \lambda_i\}$ back to (8) and minimizing gives

$$\min_{\{\mathbf{I}_i\}} \mathcal{L}\left(\lambda, \mathbf{I}\right) = \lambda_1. \tag{11}$$

Solution to Radiation Efficiency Bound (\mathcal{P}_1)

Lagrangian reads

$$\mathcal{L}(\lambda, \mathbf{I}) = \mathbf{I}^{\mathrm{H}} \mathbf{L} \mathbf{I} - \lambda \left(\mathbf{I}^{\mathrm{H}} \mathbf{R} \mathbf{I} - 1 \right).$$
(8)

Stationary points

$$\frac{\partial \mathcal{L}}{\partial \mathbf{I}^{\mathrm{H}}} = \mathbf{L}\mathbf{I} - \lambda \mathbf{R}\mathbf{I} = 0 \tag{9}$$

are solution to generalized eigenvalue problem (GEP):

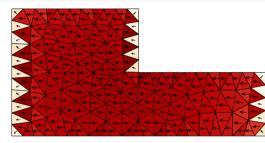
$$\mathbf{LI}_i = \lambda_i \mathbf{RI}_i. \tag{10}$$

Substituting a discrete set of stationary points $\{I_i, \lambda_i\}$ back to (8) and minimizing gives

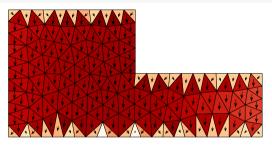
$$\min_{\{\mathbf{I}_i\}} \mathcal{L}\left(\lambda, \mathbf{I}\right) = \lambda_1. \tag{11}$$

Solution to QCQP Problems for Radiation Efficiency

Example: Radiation Efficiency Bound of an L-plate (\mathcal{P}_1) $k_a = 1, R_s = 0.01 \Omega/\Box.$



Optimal current (1st mode), $Z_0/R_s (ka)^2 \delta_{loss} = 17.6$.



The 2nd current mode, $Z_0/R_s (ka)^2 \delta_{loss} = 19.2$.

 \blacktriangleright Implicitly solved by dominant radiation mode⁶ or simplification of EFIE⁷.

⁶K. Schab, "Modal analysis of radiation and energy storage mechanisms on conducting scatterers," PhD thesis, University of Illinois at Urbana-Champaign, 2016

⁷M. Shahpari and D. V. Thiel, "Fundamental limitations for antenna radiation efficiency," *IEEE Trans.* Antennas Propag., vol. 66, no. 8, pp. 3894–3901, 2018

Solution to Self-Resonant Radiation Efficiency Bound (\mathcal{P}_2)

The same solving procedure as with problem \mathcal{P}_1 , two Lagrange multipliers, however:

$$\mathcal{L}(\lambda_1, \lambda_2, \mathbf{I}) = \mathbf{I}^{\mathrm{H}} \mathbf{L} \mathbf{I} - \lambda_1 \left(\mathbf{I}^{\mathrm{H}} \mathbf{R} \mathbf{I} - 1 \right) - \lambda_2 \mathbf{I}^{\mathrm{H}} \mathbf{X} \mathbf{I}.$$
 (12)

Stationary points

$$(\mathbf{L} - \lambda_2 \mathbf{X}) \mathbf{I}_i = \lambda_{1,i} \mathbf{R} \mathbf{I}_i.$$
(13)

Solving strategy:

- 1. Determine interval⁸ of λ_2 such that $\mathbf{L} \lambda_2 \mathbf{X} \succ \mathbf{0}$ (since $\mathbf{R} \succ \mathbf{0}$).
- 2. Solve (13) iteratively, pick the first minimum (i = 1) and maximize dual function $g = \sup \mathcal{L}(\lambda_{1,i}, \lambda_2, \mathbf{I}_i) = \max_{\lambda_2} \lambda_{1,1}$.

Solution to Self-Resonant Radiation Efficiency Bound (\mathcal{P}_2)

The same solving procedure as with problem \mathcal{P}_1 , two Lagrange multipliers, however:

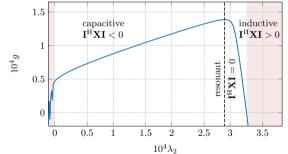
$$\mathcal{L}(\lambda_1, \lambda_2, \mathbf{I}) = \mathbf{I}^{\mathrm{H}} \mathbf{L} \mathbf{I} - \lambda_1 \left(\mathbf{I}^{\mathrm{H}} \mathbf{R} \mathbf{I} - 1 \right) - \lambda_2 \mathbf{I}^{\mathrm{H}} \mathbf{X} \mathbf{I}.$$
 (12)

Stationary points

$$(\mathbf{L} - \lambda_2 \mathbf{X}) \mathbf{I}_i = \lambda_{1,i} \mathbf{R} \mathbf{I}_i.$$
(13)

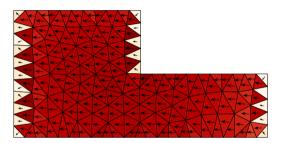
Solving strategy:

- 1. Determine interval⁸ of λ_2 such that $\mathbf{L} - \lambda_2 \mathbf{X} \succ \mathbf{0}$ (since $\mathbf{R} \succ \mathbf{0}$).
- 2. Solve (13) iteratively, pick the first minimum (i = 1) and maximize dual function $g = \sup \mathcal{L}(\lambda_{1,i}, \lambda_2, \mathbf{I}_i) = \max_{\lambda_2} \lambda_{1,1}$.



⁸M. Gustafsson and M. Capek, "Maximum gain, effective area, and directivity," *IEEE Trans. Antennas Propag.*, vol. 67, no. 8, pp. 5282 –5293, 2019

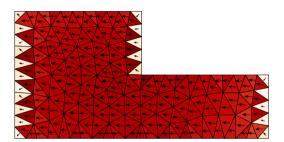
Solution to QCQP Problems for Radiation Efficiency



Optimal current for \mathcal{P}_1 , $Z_0/R_{\rm s} (ka)^2 \,\delta_{\rm loss} = 17.6.$

Optimal current for \mathcal{P}_2 , $Z_0/R_{\rm s} (ka)^4 \, \delta_{\rm loss} = 52.3$.

Solution to QCQP Problems for Radiation Efficiency



Optimal current for \mathcal{P}_1 , $Z_0/R_{\rm s} (ka)^2 \,\delta_{\rm loss} = 17.6.$

Optimal current for \mathcal{P}_2 , $Z_0/R_{\rm s} (ka)^4 \, \delta_{\rm loss} = 52.3$.

The same optimization approach may be applied for any representation of the integral operators.

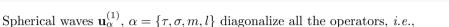
▶ Surface MoM, separable bodies, volumetric MoM, hybrid integral methods.

Exact Solution for a Spherical Shell $(\mathcal{P}_1 \& \mathcal{P}_2)$

Spherical waves $\mathbf{u}_{\alpha}^{(1)}$, $\alpha = \{\tau, \sigma, m, l\}$ diagonalize all the operators, *i.e.*,

$$\left\langle \mathbf{u}_{\alpha}^{(1)}, \mathcal{Z}\left[\mathbf{u}_{\alpha'}^{(1)}\right] \right\rangle = p_{\alpha}\delta_{\alpha\alpha'}$$
 (14)

Exact Solution for a Spherical Shell $(\mathcal{P}_1 \& \mathcal{P}_2)$



$$\left\langle \mathbf{u}_{\alpha}^{(1)}, \mathcal{Z}\left[\mathbf{u}_{\alpha'}^{(1)}\right] \right\rangle = p_{\alpha}\delta_{\alpha\alpha'}$$
 (14)

► Solution found by setting all waves to radiate unitary power, $\left\langle \mathbf{u}_{\alpha}^{(1)}, \mathcal{R}\left[\mathbf{u}_{\alpha'}^{(1)}\right] \right\rangle = 2\delta_{\alpha\alpha'}$.

Problem $\mathcal{P}_1 \ (ka \ll 1)$ Problem $\mathcal{P}_2 \ (ka \ll 1)$ \blacktriangleright Dominant TM mode \blacktriangleright TM and TE modes tuned to resonance

$$\min_{\mathbf{I}} \delta_{\text{loss}} = \frac{9}{4} \frac{R_{\text{s}}}{Z_0} \frac{1}{\left(ka\right)^2}.$$

$$\min_{\mathbf{I}} \delta_{\text{loss}} = 3 \frac{R_{\text{s}}}{Z_0} \frac{1}{\left(ka\right)^4}.$$

Exact Solution for a Spherical Shell $(\mathcal{P}_1 \& \mathcal{P}_2)$

Spherical waves $\mathbf{u}_{\alpha}^{(1)}$, $\alpha = \{\tau, \sigma, m, l\}$ diagonalize all the operators, *i.e.*,

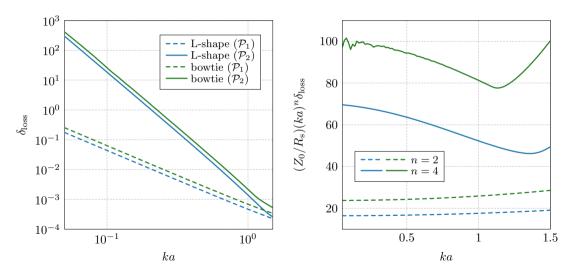
$$\left\langle \mathbf{u}_{\alpha}^{(1)}, \mathcal{Z}\left[\mathbf{u}_{\alpha'}^{(1)}\right] \right\rangle = p_{\alpha}\delta_{\alpha\alpha'}$$
 (14)

Solution found by setting all waves to radiate unitary power, $\left\langle \mathbf{u}_{\alpha}^{(1)}, \mathcal{R}\left[\mathbf{u}_{\alpha'}^{(1)}\right] \right\rangle = 2\delta_{\alpha\alpha'}$.

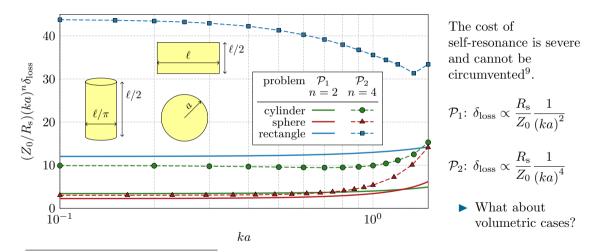
Problem $\mathcal{P}_1 \ (ka \ll 1)$ Problem $\mathcal{P}_2 \ (ka \ll 1)$ \blacktriangleright Dominant TM mode \blacktriangleright TM and TE modes tuned to resonance

- ▶ Notice different scaling of problem \mathcal{P}_1 and \mathcal{P}_2 ,
- ▶ linear trade-off between normalized δ_{loss} and Q-factor.

Example: Scaling of the Problem \mathcal{P}_1 and \mathcal{P}_2



Scaling of the Problem \mathcal{P}_1 and \mathcal{P}_2

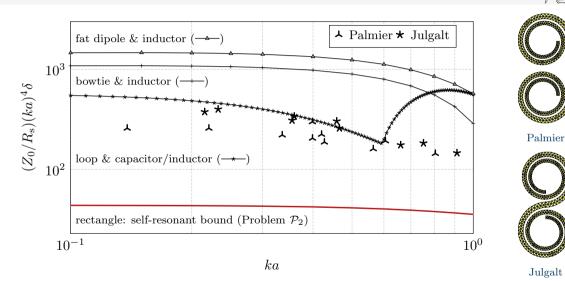


⁹L. Jelinek, K. Schab, and M. Capek, "The radiation efficiency cost of resonance tuning," *IEEE Trans.* Antennas Propag., vol. 66, no. 12, pp. 6716–6723, 2018

Miloslav Čapek, et al.

20 / 34

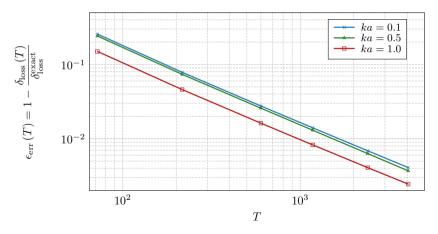
Comparison of Antennas with the Bound \mathcal{P}_2



21 / 34

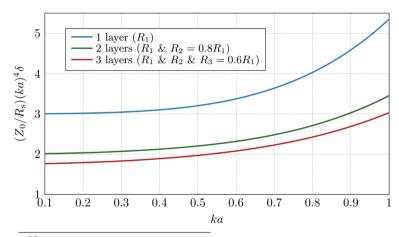
Precision of the Algebraic Formulation

 \blacktriangleright Bound corresponding to a spherical shell of radius a, compared with the analytical results.



Evaluated in AToM for $T = \{72, 216, 600, 1176, 2400, 4056\}$ triangles.

A Multi-Layered Sphere



- ► Two spherical layers still evaluated analytically¹⁰.
- ► It is confirmed that (pseudo-)volumetric current exhibits better than surface current¹¹.

¹⁰V. Losenicky, L. Jelinek, M. Capek, *et al.*, "Dissipation factors of spherical current modes on multiple spherical layers," *IEEE Trans. Antennas and Propag.*, vol. 66, no. 9, pp. 4948–4952, 2018

¹¹A. Karlsson, "On the efficiency and gain of antennas," Prog. Electromagn. Res., vol. 136, pp. 479–494, 2013

Miloslav Čapek, et al.

Fundamental Bounds on Dissipation Factor for Wearable and Implantable Antennas

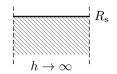
Limits of the Surface Resistivity Model

Ohmic losses in MoM are approximated with surface resistivity model.

- ▶ Skin depth lower than sheet's thickness ($\delta \ll h$).
- ▶ Skin depth negligible as compared to effective curvature.

Significant errors when sheets close to each other (e.g., folded dipole).

- ► Surface resistivity model can be improved:
 - ▶ Summation of current wave and its reflection.
 - ▶ Two sheets with half resistivity (but twice as many unknowns).
 - ▶ Always problem dependent solution.



The only general remedy is a full-wave volumetric method of moments (with crazily many discretization elements for conductors).

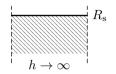
Limits of the Surface Resistivity Model

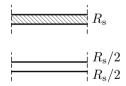
Ohmic losses in MoM are approximated with surface resistivity model.

- ▶ Skin depth lower than sheet's thickness $(\delta \ll h)$.
- ▶ Skin depth negligible as compared to effective curvature.

Significant errors when sheets close to each other (e.g., folded dipole).

- ▶ Surface resistivity model can be improved:
 - ▶ Summation of current wave and its reflection.
 - ▶ Two sheets with half resistivity (but twice as many unknowns).
 - ▶ Always problem dependent solution.





The only general remedy is a full-wave volumetric method of moments (with crazily many discretization elements for conductors).

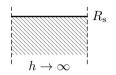
Limits of the Surface Resistivity Model

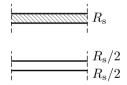
Ohmic losses in MoM are approximated with surface resistivity model.

- ▶ Skin depth lower than sheet's thickness ($\delta \ll h$).
- ▶ Skin depth negligible as compared to effective curvature.

Significant errors when sheets close to each other (e.g., folded dipole).

- ▶ Surface resistivity model can be improved:
 - ▶ Summation of current wave and its reflection.
 - ▶ Two sheets with half resistivity (but twice as many unknowns).
 - ▶ Always problem dependent solution.





The only general remedy is a full-wave volumetric method of moments (with crazily many discretization elements for conductors).

Implementation of Volumetric Method of Moments (VMoM)

VMoM implemented within periodic workshops on small antennas¹².

▶ Volumetric radiation integrals converted to surface integrals only¹³.

$$Z_{mn} = -j \frac{Z_0}{k} \int_{V_{m-}} \boldsymbol{\psi}_m(\boldsymbol{r}) \cdot \left(\boldsymbol{1} + \boldsymbol{\chi}^{-1}(\boldsymbol{r})\right) \cdot \boldsymbol{\psi}_n(\boldsymbol{r}) \, \mathrm{d}V \qquad \hat{\boldsymbol{x}} \qquad \\ -j \frac{Z_0}{k} \oint_{S_{m-}} \int_{S_{n-}} \hat{\boldsymbol{n}}_m(\boldsymbol{r}) \cdot \left(\boldsymbol{\psi}_m(\boldsymbol{r}) \times \left(\boldsymbol{\psi}_n(\boldsymbol{r'}) \times \hat{\boldsymbol{n}}_n(\boldsymbol{r'})\right)\right) G(\boldsymbol{r}, \boldsymbol{r'}) \, \mathrm{d}S' \, \mathrm{d}S$$

- \blacktriangleright Precise and fast evaluation of all (potentially) singular integrals¹⁴.
- ▶ Constant basis functions in a center of tetrahedra $\{\hat{x}, \hat{y}, \hat{z}\} \rightarrow$ fast evaluation.

 T_i

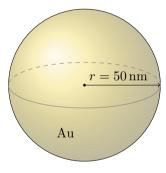
 \hat{z}

¹²Series of ESA Workshops.

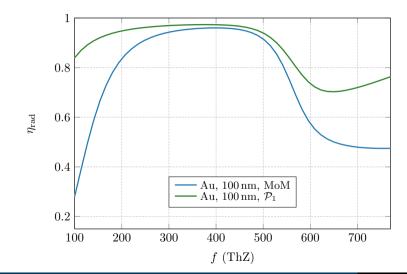
¹³A. Polimeridis, J. Villena, L. Daniel, *et al.*, "Stable FFT-JVIE solvers for fast analysis of highly inhomogeneous dielectric objects," *Journal of Computational Physics*, vol. 269, pp. 280–296, 2014

¹⁴R. D. Graglia, "On the numerical integration of the linear shape functions times the 3-D green's function of its gradient on a plane triangle," *IEEE Trans. Antennas Propag.*, vol. 41, pp. 1448–1455, 1993

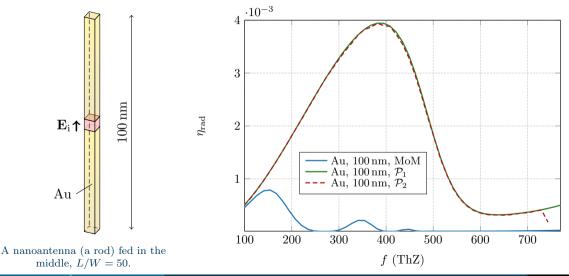
Example: Scattering of a Gold Nanoparticle (VMoM)



A nanoparticle excited by impinging plane wave.

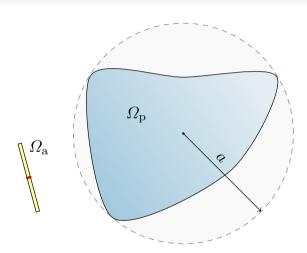


Example: Plasmonic Nanoantenna (VMoM)



Miloslav Čapek, et al.

MoM & T-Matrix: Active Element Outside



Active (yellow) and passive (blue) scatterers.

- \blacktriangleright Active element modeled with MoM (**Z**).
- ▶ Passive scatterer with T-matrix (**T**).

$$\left(egin{array}{ccc} \mathbf{Z} & -\mathbf{S}_4^{\mathrm{T}} & \mathbf{0} \ \mathbf{S}_4 & \mathbf{0} & \mathbf{1} \ \mathbf{0} & \mathbf{1} & -\mathbf{T} \end{array}
ight) \left(egin{array}{ccc} \mathbf{I} \ \mathbf{f}_1 \ \mathbf{a}_1 \end{array}
ight) = \left(egin{array}{ccc} \mathbf{V} \ \mathbf{0} \ \mathbf{0} \end{array}
ight)$$

Coupling (outcoming waves):

$$S_{4,\alpha n} = k\sqrt{Z_0} \int_{\Omega} \mathbf{u}_{\alpha}^{(4)}\left(k\boldsymbol{r}\right) \cdot \boldsymbol{\psi}_n\left(\boldsymbol{r}\right) \, \mathrm{d}S.$$

Auxiliary equation:

 $\mathbf{f}_1 = \mathbf{T}\mathbf{a}_1.$

Example: A Dipole Antenna Close to a Car Chassis

120

Miloslav Čapek, et al.

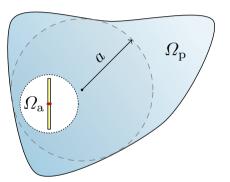
100 $R_{\rm in}, X_{\rm in}$ (Ω) 80 dipole close to the car, R_{in} dipole close to the car, $X_{\rm in}$ dipole in free-space, $R_{\rm in}$ dipole in free-space, $X_{\rm in}$ 60 40206 8 10 1214d (m) (distance from the car)

A car chassis (30426 DOF) with a half-wavelength dipole located nearby.

	\mathbf{S}	\mathbf{T}	total time
$3980\mathrm{s}$	$299\mathrm{s}$	$252\mathrm{s}$	$4531\mathrm{s}$

For 70 various positions of a dipole:

MoM & T-Matrix: Active Element Inside



Active (yellow) and passive (blue) scatterers.

- \blacktriangleright Active element modeled with MoM (**Z**).
- ▶ Passive scatterer with T-matrix (**T**).

$$\left(egin{array}{ccc} \mathbf{Z} & -\mathbf{S}_1^{\mathrm{T}} & \mathbf{0} \ \mathbf{S}_1 & \mathbf{0} & \mathbf{1} \ \mathbf{0} & \mathbf{1} & -\mathbf{\Gamma} \end{array}
ight) \left(egin{array}{c} \mathbf{I} \ -\mathbf{a}_1 \ -\mathbf{f}_1 \end{array}
ight) = \left(egin{array}{c} \mathbf{V} \ \mathbf{0} \ \mathbf{0} \end{array}
ight)$$

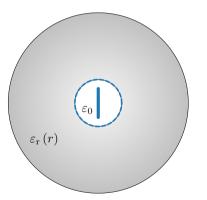
Coupling (regular waves):

$$S_{1,\alpha n} = k\sqrt{Z_0} \int_{\Omega} \mathbf{u}_{\alpha}^{(1)}\left(k\boldsymbol{r}\right) \cdot \boldsymbol{\psi}_n\left(\boldsymbol{r}\right) \, \mathrm{d}S.$$

Auxiliary equation:

 $\mathbf{a}_1 = \mathbf{\Gamma} \mathbf{f}_1.$

Example: Dipole in a Capsule Inside Human Body



Results to be presented in a few days/during the conference.

An electrically small antenna inside capsule implanted in a body.

Miloslav Čapek, et al.

MoM & T-Matrix: Comparison

▶ Formally similar problems to deal with (external feeding omitted here).

$$\begin{array}{ccc} \text{External case} \\ & \begin{pmatrix} \mathbf{Z} & -\mathbf{S}_4^{\mathrm{T}} & \mathbf{0} \\ \mathbf{S}_4 & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} & -\mathbf{T} \end{pmatrix} \begin{pmatrix} \mathbf{I} \\ \mathbf{f}_1 \\ \mathbf{a}_1 \end{pmatrix} = \begin{pmatrix} \mathbf{V} \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$

- ▶ Creeping waves,
- ▶ devices close to human body,
- ▶ small devices close to large platforms.

Internal case

$$\left(egin{array}{ccc} \mathbf{Z} & -\mathbf{S}_1^{\mathrm{T}} & \mathbf{0} \ \mathbf{S}_1 & \mathbf{0} & \mathbf{1} \ \mathbf{0} & \mathbf{1} & -\mathbf{\Gamma} \end{array}
ight) \left(egin{array}{c} \mathbf{I} \ -\mathbf{a}_1 \ -\mathbf{f}_1 \end{array}
ight) = \left(egin{array}{c} \mathbf{V} \ \mathbf{0} \ \mathbf{0} \end{array}
ight)$$

- ▶ Implantable antennas,
- ▶ special lenses.

Concluding Remarks

- ▶ Integral equations and MoM is about more than just $I = Z^{-1}V!$
- \blacktriangleright MoM-related operators (Z, W, S, U, L, ...) have unthought applications.

What has been done

- ▶ Bounds on radiation efficiency well understood.
- ▶ Cost of self-resonance evaluated.
- ▶ Trade-offs with Q-factor and antenna gain known.

Concluding Remarks

- ▶ Integral equations and MoM is about more than just $I = Z^{-1}V!$
- \blacktriangleright MoM-related operators (Z, W, S, U, L, ...) have unthought applications.

What has been done

- ▶ Bounds on radiation efficiency well understood.
- ▶ Cost of self-resonance evaluated.
- ▶ Trade-offs with Q-factor and antenna gain known.

Topics of ongoing research

- ▶ Improved model for surface resistivity.
- ► Finalization of MoM–T-matrix hybrid method.
- ▶ Tightness of the bounds (topo. sensitivity check, number of ports).
- ▶ SMoM+VMoM (good conductors immersed in material).

Questions?

Miloslav Čapek miloslav.capek@fel.cvut.cz

October 2, 2019 ICECOM, Dubrovnik, Croatia version 1.1, last edit: October 10, 2019

The presentation is downloadable at

capek.elmag.org

Acknowledgment: This work was supported by the CTU grant SGS19/168/OHK3/3T/13 "Electromagnetic structures and waves".

Miloslav Čapek, et al.

Fundamental Bounds on Dissipation Factor for Wearable and Implantable Antennas 34 / 34