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Chapter 1

Introduction to FOPS

Fast Optimization Procedures (FOPS) is a toolbox for optimization in MATLAB. It covers local
optimization methods as well as global ones. It is able to solve both single-objective and multi-
objective optimization problems.

Newton (SONEW 14.1.6) and Nelder-Mead (SONEME 14.1.5) local optimization algorithms
were implemented in FOPS. Global single-objective methods included are Genetic Algorithm (SOGA
14.1.1), Differential Evolution (SODE 14.1.3), Particle Swarm Optimization (SOPSO 14.1.2), Self-
Organizing Migrating Algorithm (SOSOMA 14.1.4), and Covariance Matrix Adaptation Evolution
Strategy (SOCMAES 14.1.7).

Multi-objective optimization problems are covered by Elitist Non-dominated Sorting Algorithm
(NSGA-II 14.2.1), Generalized Differential Evolution 3 (GDE3 14.2.3) and Multi-Objective Particle
Swarm Optimization (MOPSO 14.2.2).

Problems with variable number of dimensions are covered by single-objective Variable Number
of Dimensions Particle Swarm Optimization (VNDPSO 14.3.1) algorithm, Variable Number of
Dimensions Multi-Objective Particle Swarm Optimization (VNDMOPSO ??), and multi-objective
Variable Number of Dimensions Generalized Differential Evolution (VNDGDE3 14.3.3).

User can define easily its own problem in FOPS, but it also contains numerous benchmark
problems. Additionally, most of the methods are able to solve constrained problems. All the
optimization methods can also work with discrete decision space.

The FOPS enables user to use the chain of individual optimization algorithms, meaning that a
single problem can be processed by the sequence of optimization methods. Therefore, advantages
of individual algorithms can be exploited.

Various comparative studies can easily be performed in FOPS using a comparative study sim-
ulation type with prepared metrics for the evaluation of convergence properties.

The FOPS toolbox can be operated via command line or via Graphic User Interface (GUI).
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Chapter 2

Optimization

Optimization is a process of finding optimal solutions. The definition of solution’s quality is based
on fitness values calculated from fitness functions. The fitness functions describe the behaviour of
an optimized system with properties called decision variables. Therefore, the fitness values depend
on the decision variables of the optimized system. The optimization process can be thereafter
considered as a process of finding minima (or maxima) of the fitness values.

If the system is described by one fitness function, the optimization process is called a single-
objective (SO) optimization. The optimization is called multi-objective (MO) in case of multiple
fitness functions. Most real-world optimization problems are multi-objective, where the particular
objectives are conflicting, which results in a set of optimal, trade-off, solutions called Pareto-front.

Optimization problems frequently involves constraints, that restrict some properties of the
system to lie within pre-specified limits. Such restrictions are described by constraint functions.
The solution that violates the constraint functions is called an infeasible solution. The infeasible
solution can be taken as an optimal solution from the fitness values point of view, but a properly
working optimization algorithm should penalize such solutions and present only feasible solutions
as a result.

If a set of solutions is found in the single-objective optimization process, the optimal solution
is the one with the smallest fitness value. This is more complicated in case of the multi-objective
problem, because each solution is described with multiple values. If the first fitness value of one
solution is lower than the first fitness value of the second solution, while the second fitness value is
higher, it cannot be said which solution is better with respect to both objectives (fitness values).
Neither solution dominates the other, therefore the solutions are non-dominated.

The aim of single objective optimization process is to find a solution as close to the true optimal
solution as possible. But there are three main goals when solving the multi-objective problem:

� Maximize the number of solutions in non-dominated set.

� Minimize the distance of found non-dominated set produced by optimization algorithm to
the true Pareto-front (optimal non-dominated set).

� Maximize the spread of found non-dominated solutions, so the solutions are distributed as
uniformly over the Pareto-front as possible.

Note that the prefix true as in true optimal solution or true Pareto-front denotes the best
possible solution or a set of solutions to be found for a given problem. The optimal solution or
the Pareto-front denotes best solution or set of solutions found in particular optimization process.
Therefore, the Pareto-front and the true Pareto-front are two different sets of solutions. Such a
nomenuclature is used throughout the whole document.
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Chapter 3

Simulations in FOPS

The FOPS toolbox offers three different types of simulation - tasks, chains and comparative studies.
The comparative study can be seen as a set of several chains solving multiple problems. The chain
is a set of optimization tasks connected together to optimize the single problem. An optimization
task employs agents, changing their position in the decision space of optimization problem.

3.1 Agent

Agent is a fundamental particle of the optimization process. Agents are sometimes called individ-
uals (frequently in Genetic Algorithms (GA)) or particles (often in Particle Swarm Optimization
algorithms (PSO)). In PSO (see Subsection 14.1.2), the concept of the agent is often interpreted as
a bee flying over a meadow searching for food. The optimization algorithm controls the position of
the bee based on the quantity of food in a given location (expressed by the fitness value). Therefore,
an agents has its position and a corresponding fitness value.

Agent objects has the following properties:

position: position of agent, double [1 x nVars]

fitness: fitness values expresses the quality of the solution, double [1 x nObjs]

constraints: constraint values determines the feasibility of the agent, double [1 x nCons]

nVars: number of decision variables of the agent, double [1 x 1]

3.2 Task

The task is the simplest simulation type in FOPS. The task exploits a single optimization algorithm
to solve an optimization problem. Tasks can be found in tasks container of the FOPS object. The
task object OptTask (NSGAIITask, MOPSOTask, etc.) contains the following properties:

Task settings: varies according to the optimization algorithm (e.g. PC, PM, C1, C2, W, F, etc.).
See Section 7.1.

name: unique identification of the task in the FOPS, char [1 x N]

nAgents: number of agents, double [1 x 1]

agents: container of objects of type Agent (see Section 3.1), Agent [1 x nAgents]

currentIter: actual iteration - changes along the run of the optimization task, double [1 x 1]

nIters: number of iterations, double [1 x 1]

problem: optimization problem description (see Chapter 4), struct [1 x 1]

problemName: name of the optimization problem, char [1 x M]

problemConstrained: is set if the problem contains constraint functions, logical [1 x 1]
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3.3. CHAIN

isVectorized: is set if the fitness functions of the problem are vectorized, logical [1 x 1]

nObjs: number of objectives of the problem, double [1 x 1]

stopCondition: stop conditions of the optimization task (see Subsection 6.4.1), cell [S x 1]

history: contains positions, fitness and constraints values from all iterations if
activeHistory property is set, struct [1 x 1]

results: results of the optimization run. Contains position, fitness values and constraints
values of the found solutions, struct [1 x 1]

finished: is set if the task was already run, logical [1 x 1]

activeHistory if the property is set, history is filled during the optimization run, logical [1 x 1]

showProgress: waitbar is shown during the optimization run if it is set, logical [1 x 1]

userData: users arbitrary data, cell [1 x 1]

3.3 Chain

The chain is very similar to the task simulation, but instead of one optimization algorithm, it runs
several optimization algorithms to solve one optimization problem. Tasks are chained, i.e. run
sequentially one after another. Therefore, the user can exploit different advantages of different
algorithms. Chains can be found in the chains container of the FOPS object. The Chain object
has the following properties:

name: unique identification of chain in FOPS, char [1 x M]

tasks: container of tasks in chain (Section 3.2), OptTask [1 x N]

problemName: name of optimization problem, char [1 x X]

showProgress: waitbar is shown during the optimization run if it is set, logical [1 x 1]

activeHistory if the property is set, history is filled during the optimization run, logical [1 x 1]

computationalTime: time that the run of the chain took, double [1 x 1]

history: contains positions, fitness and constraints values from all iterations of all tasks,
struct [1 x 1]

results: results of the optimization run. Contains position, fitness values and constraints
values of the found solutions, struct [1 x 1]

finished: is set if the chain was already performed, logical [1 x 1]

3.4 Comparative Study

The comparative study (CS) is the last and the most complex simulation type. The comparative
study allows user to perform the optimization of numerous problems with multiple chains in order
to compare the performance of different chains on a set of problems. User can enable the calculation
of several predefined metrics which expresses the quality of found solutions.

Comparative studies can be found in comparativeStudies container of the FOPS object. The
CompStudy object has the following properties:

name: unique identification of the comparative study in the FOPS, char [1 x M]

chains: container of chains in comparative study (Section 3.3). Comparative study includes
several unique chains and several problems. The overall number of columns of
chains property is a product of number of unique chains and number of prob-
lems in comparative study. Number of rows of chains property is defined by nRuns
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CHAPTER 3. SIMULATIONS IN FOPS

property. See Figure 6.12 for better understanding of chains property dimensions,
Chain [nRuns x N]

nRuns: number of repetitions of all chains in the comparative study, double [1 x 1]

problemNames: names of all problems in comparative study, char [1 x X]

metricTypes: contains list of metrics that will be calculated during the simulation run (see
Section ??), MetricType [1 x Y]

showProgress: waitbar is shown during the optimization run if it is set, logical [1 x 1]

activeHistory property history of individual chains is filled during the comparative study run,
logical [1 x 1]

results: fields named according to the enabled metrics, struct [1 x 1]

finished: is set if the comparative study was already performed, logical [1 x 1]

The comparative study can be described as a useful tool for a statistical analysis in the optimiza-
tion, but it does not do much by itself. It only combines functionality of the previous simulation
types and calculates the metrics. User should also notice, that the overall number of simulations
can very quickly increase and the comparative study computational time can dramatically grow,
because overall number of simulations is a product of the number of problems in CS, the number
of chains in CS and the number of runs of CS.
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Chapter 4

User Problem

User defines optimization problems in the FOPS as a MATLAB function with one output argument
- problem (see Listing 4.1). Location of problems functions is either current working directory or
directories listed in +install/problemFunctionPaths.txt file. The FOPS package also contains
numerous benchmark problems (see Chapter 15) located in benchmark folder in FOPS package.

Current directory and folders listed in +install/problemFunctionPaths.txt file (benchmark
folder by default) are scanned for problem functions during the FOPS initialization. A MATLAB
function is marked as a problem function if its header contains string function problem = . . . .
Problem function names are stored in problemsList property of the FOPS object along with the
path. Therefore, if a new problem function is created, it is not possible to use it immediately,
because such problem is not listed in the problemList. FOPS method loadProblems is used to
refresh the problemList (see Subsection 6.4.4).

Name of problem function determines the string by which the problem will be called in FOPS.
For example if problem function is named MOZDT1, user identifies such problem by the string MOZDT1

(note that the problem name is case insensitive). Problem function returns the struct with fields
that describe the problem. The problem is defined by at least two main fields limits (see Section
4.1) and fitness (see Section 4.2).

Listing 4.1 shows the MODTLZ1 benchmark problem definition. The definition returns the prob-
lem struct with fields: limits, fitness, isVectorized (see Section 4.5), and name (see Section
4.3).

The function MODTLZ1 has one input argument - input. Input argument input is further
described in Subsection 6.1.1 (specifically Listing 6.6) or Subsection 6.2.1 (specifically Listing 6.23).

Listing 4.1: Definition of problem m-file.

function problem = MODTLZ1(input)
nVars = input.nVars;
nObjs = input.nObjs;
limits = [zeros(1, nVars); ones(1, nVars)];
fitness = @(x) DTLZ1Fitness(x, nVars, nObjs);
problem = struct(...

'limits', limits, ...
'fitness', fitness, ...
'isVectorized', true, ...
'name', 'MODTLZ1');

end

The problem function can be also generated in graphic user interface (GUI) using the push
button in Figure 6.2. Contrarily, user can load an existing problem m-file into GUI by using the

push button in Figure 6.2.
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4.1 limits

Property limits denotes ranges of decision variables. It is an array of doubles of size [2 x nVars],
where nVars is number of decision variables. First row contains lower bounds of decision variables
and upper bounds are in second row of limits.

Listing 4.2 shows an example of the limits definition. The first decision variable x1 ∈ 〈−2, 5〉.
The second and the third decision variables range from 0 to 10.

Listing 4.2: Definition of problem limits.

limits = [-2, 0, 0; 5, 10, 10];

4.2 fitness

Property fitness denotes the fitness functions definition. It is defined as an anonymous function,
array of anonymous functions or function handle. Listings 4.3, 4.4, and 4.5 shows the definition of
the fitness functions, that are based on the MO2D benchmark problem. Variable x denotes decision
variables.

Listing 4.3: Fitnes function as anonymous function.

fitness = @(x) (1 + x(:, 2)) / x(:, 1);

Listing 4.4: Fitnes function as an array of anonymous functions.

fitness = @(x) {...
x(:, 1), ...
(1 + x(:, 2)) ./ x(:, 1)};

Listing 4.5: Definition of fitness function by function handle.

fitness = @(x) MO2DFitness(x);
function fitness = MO2DFitness(x)
fitness(:, 1) = x(:, 1);
fitness(:, 2) = (1 + x(:, 2)) ./ x(:, 1);
end

The function DTLZ1Fitness that returns fitness values is mentioned in Listing 4.1. The
DTLZ1Fitness function definition is shown in Listing 4.6. It has three input arguments (x suggest-
ing agent’s position, nVars is number of decision variables and nObjs is number of objectives) and
one output argument (fitness values).

Listing 4.6: Fitness function of MODTLZ1 problem.

function fitness = DTLZ1Fitness(x, nVars, nObjs)
k = nVars - nObjs + 1;
xm = x(:, nVars - k + 1:end);
g = 1*(k+sum((xm-0.5).ˆ2 - cos(20*pi()*(xm-0.5)), 2));
fitness(:, 1) = 0.5*prod(x(:, 1:nObjs-1), 2) .* (1+g);
for iObj = 2:nObjs-1

fitness(:, iObj) = 0.5*prod(x(:, 1:nObjs-iObj), 2).*(1-x(:, nObjs-iObj+1)) .* (1+g);
end
fitness(:, nObjs) = 0.5*(1-x(:, 1)) .* (1 + g);
end

Listing 4.7 shows the definition of minimal working example of problem definition.

Listing 4.7: Minimal working example of problem.

function problem = MySimpleProblem()
limits(:, 1) = [0.1, 1];
limits(:, 2) = [0, 1];
fitness = @(x) {...
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x(:, 1), ... % first fitness function
(1 + x(:, 2)) ./ x(:, 1)}; % second fitness function

problem = struct('limits', limits, 'fitness', fitness);
end

4.3 name

Property name is used for the identification of the problem in FOPS. Therefore, it is possible to have
problem defined by m-file named e.g. MySimpleProblem, but the field name in problems struct is
e.g. problemName. If user wants to optimize such a problem, it will be called by MySimpleProblem,
but in FOPS object the problem is later identified by the problemName.

For the sake of clarity, it is recommended to use the problem name identical to the name of the
problem m-file or omit the problem’s name property entirely. The name property of problem is by
default set to the problem m-file name by FOPS class.

4.4 constraints

Property constraints denotes constraint functions definition. Constraint functions are defined in
a similar way as fitness functions. The only difference is that constraint functions has two input
arguments decision variables (x) and fitness values (f). Output argument is an array of logical
values (g).

Listing 4.8 shows constraint function restricting the fitness value be lower than 25 by an anony-
mous function, while in the Listing 4.9, constraints functions are defined as a function handle. The
second constraint function states that the product of decision variables has to be lower than 400.

Listing 4.8: Constraint function defined by anonymous function.

constraints = @(x, f) f(:, 1) > 25;

Listing 4.9: Constraint functions defined by function handle.

constraints = @(x, f) myConstraintFunc(x, f);
function g = myConstraintFunc(x, f)

g(:, 1) = f(:, 1) > 25;
g(:, 2) = x(:, 1) .* x(:, 2) < 400;

end

4.5 isVectorized

Default value of isVectorized property is false. True value of isVectorized means, that fitness
and constraint functions are vectorized, i.e. fitness and constraint values of all agents in one
iteration can be calculated at once.

4.6 discreteVariables

Property discreteVariables allows user to use the discrete decision space. The discreteVariables
is a cell array containing vectors with decision variable samples. The number of cells is equal to
the number of decision variables (nVars defined by the number of columns of limits). Empty cell
denotes that particular decision variable will be real-coded.

Listing 4.10 shows the definition of the dicrete decision variables. The problem has 4 decision
variables. Third cell of discreteVars variable is left empty, therefore the third decision variable
will be real-coded. The range of all variable is xi ∈ 〈−4, 4〉 for i = 1, 2, 3, 4, therefore all values in
decisionVariables property has to be within the limits property.
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Listing 4.10: Definition of discrete decision space.

limits = [-4, -4, -4, -4; 4, 4, 4, 4];
fitness = @(x) myFitnessFunction(x);
DV{1} = [-4, -3, -2, -1, 0, 1, 4];
DV{2} = linspace(-4, 4, 9);
DV{4} = [-4, -2, 0, 2, 4];
problem = struct('limits', limits, 'fitness', fitness, 'discreteVariables', {DV});

Note that the discreteVars variable is encapsulated to cell array to ensure that the dimension
of problem struct is still [1 x 1]. More information about discrete variables can be found in
Chapter 11.

4.7 surrogate

Property surrogate enables the surrogate optimization method. Property surrogate is a struct
with mandatory field type. The type field specifies the type of surrogate optimization method to be
used. Folder with corresponding name has to be located in +surrogate folder. The folder includes
main function, defining the surrogate optimization method functionality. See more in Chapter 10.

4.8 initialPosition

The initialPosition contains initial position for optimization methods. It is a matrix of doubles
with the number of columns equal to the number of decision variables and the number of rows
equal to the number of agents. Listing 4.11 shows how to define initial position.

Listing 4.11: Definition of initial position for local optimization methods.

limits(:, 2) = [-4, 4];
fitness = @(x) myFitnessFunction(x);
initPosition = [0, 1];
problem = struct('limits', limits, 'fitness', fitness, ...

'initialPosition', initPosition);

4.9 gradient

Property gradient is usable with the local methods only. The gradient property stands for a
gradient of the fitness function and it can be defined by anonymous function or function handle. If
gradient is not stated in local optimization, numerical gradient of fitness function is used. Listings
4.12 and 4.13 shows definition of gradient taken from LOROS problem:

Listing 4.12: Definition of gradient using anonymous function.

limits(:, 2) = [-5; 10];
fitness = @(x) {sum(100*(x(:, 2) - x(:,1).ˆ2).ˆ2 + (1-x(:,1)).ˆ2, 2)};
gradient = @(x) {...

-400*x(1,1)*(x(1,2)-x(1,1)ˆ2)-2*(1-x(1,1)), 200*(x(1,2) - x(1,1)ˆ2)};
problem = struct('limits', limits, 'fitness', fitness, ...

'gradient', gradient);

Listing 4.13: Definition of gradient using function handle.

limits(:, 2) = [-5; 10];
fitness = @(x) {sum(100*(x(:, 2) - x(:,1).ˆ2).ˆ2 + (1-x(:,1)).ˆ2, 2)};
gradient = @(x) gradientFunction(x);
problem = struct('limits', limits, 'fitness', fitness, ...

'gradient', gradient);

function gradient = gradientFunction(x)
gradient = {-400*x(1,1)*(x(1,2)-x(1,1)ˆ2)-2*(1-x(1,1)), 200*(x(1,2) - x(1,1)ˆ2)};
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end

4.10 hessian

Property hessian is usable with the local methods only. The hessian property stands for a hessian
of the fitness function and it can be defined by anonymous function or function handle. If hessian
is not stated in local optimization, numerical hessian of fitness function is used.

Listings 4.14 and 4.15 shows definition of hessian taken from LOROS problem:

Listing 4.14: Definition of hessian using anonymous function.

limits(:, 2) = [-5; 10];
fitness = @(x) {sum(100*(x(:, 2) - x(:,1).ˆ2).ˆ2 + (1-x(:,1)).ˆ2, 2)};
hessian = @(x) {1200*x(1,1)ˆ2 - 400*x(1,2) + 2, -400*x(1,1); -400*x(1,1), 200};
problem = struct('limits', limits, 'fitness', fitness, 'hessian', hessian);

Listing 4.15: Definition of hessian using function handle.

limits(:, 2) = [-5; 10];
fitness = @(x) {sum(100*(x(:, 2) - x(:,1).ˆ2).ˆ2 + (1-x(:,1)).ˆ2, 2)};
hessian = @(x) hessianFunction(x);
problem = struct('limits', limits, 'fitness', fitness, 'hessian', hessian);

function hessian = hessianFunction(x)
hessian = {1200*x(1,1)ˆ2 - 400*x(1,2) + 2, -400*x(1,1); -400*x(1,1), 200};
end

4.11 nVarsList

This property is usable with methods using variable number of dimensions (VND) only. It is a list
of all the possible number of decision variables for a given problem. All values has to be positive
integer values.

Listing 4.16 shows that agent’s position can be constituted from 2, 3, 4, 5, 6, 7, 8, 9 or 10
decision variables. Note that limits has to be specified for all possible decision variables, therefore
the limits has dimensions of [2 x 10].

Listing 4.16: Definition of nVarsList.

nVarsList = 2:10;
limit = [-10; 10];
limits = repmat(limit, 1, max(nVarsList));
fitness = @(x) myFitnessFunction(x);
problem = struct('limits', limits, 'fitness', fitness, 'nVarsList', nVarsList);

Listing 4.17 shows that agent’s position can be constituted by even number of decision variables
- 2, 4, 6, 8, 10, 12, 14, 16, 18 or 20. The property limits now has to have dimensions of [2 x 20].

Listing 4.17: Definition of nVarsList - even number of decision variables.

nVarsList = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20];
limit = [-10; 10];
limits = repmat(limit, 1, max(nVarsList));
fitness = @(x) myFitnessFunction(x);
problem = struct('limits', limits, 'fitness', fitness, 'nVarsList', nVarsList);

4.12 optimalPosition

Property optimalPosition specifies true optimal position for a given problem.
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The optimalPosition is inserted directly as a numeric vector (see Listing 4.18) or as a name
of mat-file, which contains field position (see Listing 4.19).

In case of multi-objective problem, optimalPosition is a set of the true optimal positions
(matrix). If the problem is single-objective, the optimalPosition is only one true optimal position
(vector). See Listing 4.18.

Listing 4.18 shows the direct inserting of optimalPosition.

Listing 4.18: Optimal position of single-objective problem.

limits(:, 1) = [-4, 4];
limits(:, 2) = [-4, 4];
fitness = @(x) myFitnessFunction(x);
optimalPosition = [0, 0];
problem = struct('limits', limits, 'fitness', fitness, ...

'optimalPosition', optimalPosition);

In case of Listing 4.19, the file MOPOL.mat has to contain field position.

Listing 4.19: Optimal position are saved in file named MOPOL.mat.

limits(:, 1) = [-pi, pi];
limits(:, 2) = [-pi, pi];
fitness = @(x) MOPOLFitness(x);
optimalPosition = 'MOPOL';
problem = struct('limits', limits, 'fitness', fitness, ...

'optimalPosition', optimalPosition);

4.13 optimalFitness

This property is similar to optimalPosition. It specifies true optimal fitness values of a given
problem.

The optimalFitness is inserted directly as a numeric value (see Listing 4.20) or as a name of
mat-file, which contains field fitness (see Listing 4.21).

In case of multi-objective problem, optimalFitness is a true Pareto-front (matrix). If the
problem is single-objective, the optimalFitness is only one fitness value (scalar). See Listing 4.20.

In Listing 4.20, optimalFitness is directly inserted as a scalar value.

Listing 4.20: Optimal fitness of single-objective problem.

limits(:, 1) = [-4, 4];
limits(:, 2) = [-4, 4];
fitness = @(x) myFitnessFunction(x);
optimalFitness = 0;
problem = struct('limits', limits, 'fitness', fitness, ...

'optimalFitness', optimalFitness);

In case of Listing 4.21, the file MOPOL.mat has to contain field fitness.

Listing 4.21: Optimal fitness values are saved in file named MOPOL.mat.

limits(:, 1) = [-pi, pi];
limits(:, 2) = [-pi, pi];
fitness = @(x) MOPOLFitness(x);
optimalFitness = 'MOPOL';
problem = struct('limits', limits, 'fitness', fitness, ...

'optimalFitness', optimalFitness);

4.14 optimalDimension

This property specifies the optimal dimension of true optimal solutions. It can either be numeric
or a function handle. In case of multi-objective problems with variable number of dimensions, the
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Pareto-front can be build by solutions with different optimal dimensionality. Such dimensionality
is obtained from the optimalDimension property.

4.15 reference

Property reference is used by hypervolume metric (see Subsection ??). Reference point should
be specified if hypervolume metric is used. Otherwise, the reference point is taken as a maximum
of the fitness values in each objective, which can cause incomparable metric results (see Subsection
??). If the number of elements of the reference vector does not match the number of objectives
(nObjs), first element of reference vector is repeated nObjs-times.

The two-objective problem is assumed in Listing 4.22. Hypervolume will be calculated with the
reference point [2, 2].

Listing 4.22: How to set hypervolume reference point.

limits(:, 1) = [-4, 4];
limits(:, 2) = [-4, 4];
limits(:, 3) = [-4, 4];
fitness = @(x) myFitnessFunction(x);
reference = [2, 2];
problem = struct('limits', limits, 'fitness', fitness, ...

'reference', reference);

4.16 fullControl

This property allows skilled users to have reference to OptTask object during fitness functions and
constraint functions evaluations. This is particularly useful when user wants to exploit userData

property of OptTask object (see Subsections 6.1.1, 6.2.1 and 6.3.1 to see how to set userData

property of OptTask).

In Listing 4.23, the fullControl property is enabled, which allows user to gain access to
OptTask’s userData property. But there are many more possibilities with the access to OptTask
object. Note that fitness functions and constraint functions has to have one additional input
argument (task) with the fullControl property set.

Listing 4.23: fullControl property of problem is set to true.

limits(:, 1) = [-4, 4];
limits(:, 2) = [-4, 4];
limits(:, 3) = [-4, 4];
fitness = @(x, task) advancedFitnessFunction(x, task);
constraints = @(x, f, task) advancedConstraintFunction(x, f, task);
problem = struct('limits', limits, 'fitness', fitness, ...

'constraints', constraints, 'fullControl', true);

function fitness = advancedFitnessFunction(x, OptTask)
UD = OptTask.userData;
... % some operations with user's data
fitness = computeFitnessValues(x, UD);

end

function constraints = advancedConstraintFunction(x, f, OptTask)
UD = OptTask.userData;
... % some operations with user's data
constraints = computeConstraintsValues(x, f, UD);

end
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4.17 systemResponse

Property systemResponse is usable, when a user wants to visualize the individual solution. Prop-
erty systemResponse holds the function handle, which is performed upon selection of individual
solution in an interactive plot of results in GUI. See more about the systemResponse feature in
Chapter 9.

In Listing 4.24, the property systemResponse is being defined as a function handle. The
function handle has two input argument - position and fitness values of a given solution. Function
plotCircles is an abstract function here. It may contain arbitrary user’s code.

Listing 4.24: systemResponse property example.

limits(:, 1) = [-4, 4];
limits(:, 2) = [-4, 4];
limits(:, 3) = [-4, 4];
fitness = @(x, task) circlesFitness(x, task);
sysRes = @(x, f) plotCircles(x, f);
problem = struct('limits', limits, 'fitness', fitness, ...

'systemResponse', sysRes);

function plotCircles(X, F)
% possibly some operation with X (position) and F (fitness values)
% possibly some plotting of X or F
end
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Chapter 5

FOPS Class

FOPS class is the core class of the FOPS package. FOPS class operates all types of simulations via
numerous access methods. The simulations are operated by the following public methods:

addTask (Subsection 6.1.1),

changeTaskSettings (Subsection 6.1.5),

deleteTask (Subsection 6.1.2),

renameTask (Subsection 6.1.3),

runTask (Subsection 6.1.4),

addChain (Subsection 6.2.1),

changeChainSettings (Subsection 6.2.5),

deleteChain (Subsection 6.2.2),

renameChain (Subsection 6.2.3),

runChain (Subsection 6.2.4),

addCompStudy (Subsection 6.3.1),

changeCompStudySettings (Subsection 6.3.5),

deleteCompStudy (Subsection 6.3.2),

renameCompStudy (Subsection 6.3.3),

runCompStudy (Subsection 6.3.4),

addStopCondition (Subsection 6.4.1),

getProblem (Subsection 6.4.2),

loadProblems (Subsection 6.4.4),

open (Subsection 6.4.5),

quit (Subsection 6.4.6),

reset (Subsection 6.4.7),

resume (Subsection 6.4.8),

save (Subsection 6.4.9),

displayResults (Subsection 6.4.3),

startGUI (Subsection 6.4.10).
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The FOPS is initialized by command fops = FOPS(). Initialization of FOPS with graphic
user interface (GUI) is done by fops = FOPS(true). To display GUI of existing FOPS object,
command fops.startGUI() has to be used.

FOPS object has the following properties:

tasks: container of tasks in FOPS (Section 3.2), OptTask [1 x N]

chains: container of chains in FOPS (Section 3.3), Chain [1 x M]

comparativeStudies: container of comparative studies in FOPS (Section 3.4), CompStudy [1 x P]

algorithmList: list of all algorithms implemented in FOPS (see Chapter 14), cell [1 x A]

metricList: list of all metrics implemented in FOPS (see Section ??), cell [1 x B]

problemList: list of all problems found in given locations (by default benchmark folder and
current folder), struct [1 x C]

taskSettingsList: list of all task settings found during FOPS initialization (taskSettingsfiles
folder and current folder), struct [1 x D]

GUI: reference to GUI object of FOPS, GUI [1 x 1]

showProgress: if this property is set, waitbar is shown during the run of chain, logical [1 x 1]

activeHistory if the property is set, positions and fitness value from all iterations will be saved
to history property of all tasks, logical [1 x 1]

algorithmProperties: holds the default values and whole names of properties for each algorithm
in FOPS, struct [1 x 1]

openedGUI: shows whether the GUI is opened, logical [1 x 1]

5.1 GUI

Figure 5.1 shows the basic layout of GUI of FOPS. The MENU (box 1) contains entries Load

Problems, Open FOPS, Reset FOPS, Save FOPS, Quit GUI and Quit FOPS as shown in Figure 5.2.
Preferences (box 1) serves to activate the history of simulations and to activate progress waitbars.
Templates (box 1) enables user to switch GUI color templates.

The Shadow Green template is the default one (set by the defaultTemplate property of GUI
class). GUI can be launched with another color template by entering an integer value as an input
argument of FOPS constructor, GUI constructor or startGUI method. There are four different
templates prepared for GUI numbered from 1 to 4. Therefore, to start a GUI with e.g. third
color template, user should use commands fops = FOPS(3) or fops.startGUI(3). Color template
settings is located in setGUIColors method in GUI class.

Box 2 borders FOPS Tree. The FOPS Tree depicts simulations present in FOPS object. The
FOPS Tree is divided into three parts according to the three simulation types. Right mouse button
click in FOPS Tree casts the context menu, which allows user to operate FOPS simulations. Most
of FOPS Tree entries can be accessed via keyboard shortcuts - run simulation by CTRL+R, change
simulation settings by CTRL+H, delete simulation by CTRL+X, and display simulation results by
CTRL+D. These shortcuts can be used even without casting the context menu, which speeds up the
work with FOPS GUI. Simulation name in green font denotes that simulation was already run,
while the red font suggests that simulation was not run yet.

Box 3 marks tab group where user selects between task, chain and comparative study simulation
type.

In box 4 are controls needed to add task (note that task tab is currently selected). Chain and
comparative study controls are different and will be shown in Sections 6.2 and 6.3, respectively.

Box 5 contains status bar. Status bar contains simple progress bar and a rough estimation of
simulation time when simulation is in progress.
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Figure 5.1: Graphic user interface of FOPS.

Figure 5.2: MENU of GUI.
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Chapter 6

FOPS Methods

6.1 Task Methods

The box 4 in Figure 5.1 shows the tab for adding task to FOPS.

6.1.1 addTask

fops.addTask(problem, algorithm, settings, name, userData)

Inputs:

problem cell [N x 1] or cell [N x 2]

algorithm cell [N x 1]

settings optional, cell array of structs, cell [N x 1]

name optional, cell [N x 1]

userData optional, cell [1 x 1]

Method addTask has 5 input arguments: problem, algorithm, settings, name and userData.
First two arguments are mandatory while the remaining three are optional, but has to remain in
a given order.

problem is defined as a cell with struct with fields presented in Chapter 4 or as a cell with the
name of problem function (m-file) which returns such struct.

algorithm defines optimization algorithm that will be used to optimize the given problem.
settings argument defines parameters of optimization algorithm. It involves number of agents

(nAgents), number of iterations (nIters) and algorithm dependent parameters such as probability
of mutation (PC), inertia weight (W) etc. It is struct with field names suggesting type of parameter
(see Listing 6.1). For more info about the task settings see Section 7.1.

Listing 6.1: Definition of settings struct.

settings = struct('nAgents', 25, 'nIters', 200, 'W', 0.5, 'BP', 10);

name is a unique task name. Such names are shown in FOPS Tree (see Figure 5.1) and are used
to identify tasks.

Last input argument is userData, which holds user’s entries. It can be employed by user in
fitness function if fullControl property of problem is set to true (See Section 4.16).

Listing 6.2 shows a minimal working example of adding an optimization task with predefined
problem. At first, FOPS object has to be initialized. Afterwards, optimization task is added by
addTask method using only mandaroty inputs. Default task settings (See Section 7.1) and default
name (in this case task1) is used.

Listing 6.2: Minimal working example of addTask method.

fops = FOPS(); % initialization of FOPS
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Figure 6.1: Add task to FOPS and define its settings in GUI.

fops.addTask({'MOPOL'}, {'NSGA-II'})

All input arguments should be cell arrays, but if given input argument is e.g. simple string, it
will be automatically converted to cell array. Therefore, Listings 6.2 and 6.3 has equal effect.

Listing 6.3: Minimal working example of addTask method without cell array brackets.

fops = FOPS(); % initialization of FOPS
fops.addTask('MOPOL', 'NSGA-II')

In Listing 6.4 the same task is added, but some of the algorithm’s parameters are changed and
task’s name and userData are specified. Optimization task will have 1000 agents (nAgents) and
will perform 10 iterations (nIters). Binary precision (BP) of all decision variables in NSGA-II task
is set to 10. All other algorithm properties are set as default. See Section 7.1 to learn more about
task’s properties.

Listing 6.4: Example of addTask method with user defined task’s settings and name.

fops = FOPS(); % initialization of FOPS
settings = struct('nIterations', 10, 'BP', 10);
settings.nAgents = 1000;
taskName = 'myNewTask';
userData = {[1, 2, 3], [4, 5, 6]};
fops.addTask('MOPOL', 'NSGA-II', settings, taskName, userData)

The same operation (except for userData) can be done in GUI as shown in Figure 6.1. Algorithm
NSGA-II is selected by Algorithm popup menu. Problem MOPOL is selected in Problem popup menu
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Figure 6.2: Definition of optimization problem in GUI of FOPS.

and settings can be adjusted in Algorithm Settings figure after clicking on toggle button.

Note that Algorithm Settings figure differs with the used algorithm. The push button serves
to discard the changes of algorithm’s settings.

The push button serves to load algorithm’s settings from the text file.

Listing 6.5 shows how to add task with one-time problem. Such problem is inserted to addTask

method as a struct. fitness and limits are taken from MO2D problem. Problem name is optional.
For more info about problem properties see Chapter 4.

Listing 6.5: Example of addTask method with one-time problem.

fops = FOPS(); % initialization of FOPS
fitness = @(x) {x(:, 1), (1 + x(:, 2)) ./ x(:, 1)};
oneTimeProblem = struct('limits', [0.1, 0; 1, 1], 'fitness', fitness);
oneTimeProblem.name = 'oneTimeProblem';
fops.addTask(oneTimeProblem, 'NSGA-II')

The GUI version can be seen in Figure 6.2. The Problem Definition figure is displayed by
One-time Problem toggle button shown in Figure 6.1. Properties limits and fitness are the only
two mandatory properties of problem. All other properties have either default values or can be left
empty. Right half of the Figure 6.2 is invisible after casting the Problem Definition figure and
the right half is shown by clicking the Advanced Problem Settings toggle button. The problem
properties are described in Chapter 4.

Some optimization problems can be scalable, which enables user to specify e.g. how many
decision variables or fitness functions the problem has. Listing 6.6 shows how to define number of
decision variables and number of objective functions for problem MODTLZ1 (Definition of MODTLZ1
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problem can be seen in Listing 4.1). The problem will have 20 decision variables (nVars) and
4 objective functions (nObjs) and will be optimized by algorithm NSGA-II. The Listing 6.6 shows
how to exploit problem function input argument by FOPS methods. Problem input argument can
be either scalar number or struct. Input argument of problem cannot be defined in FOPS GUI.

Listing 6.6: Definition of input argument of problem when initializing task.

fops = FOPS(); % initialization of FOPS
fops.addTask({'MODTLZ1', struct('nVars', 20, 'nObjs', 4)}, 'NSGA-II')

The reason for cell arrays as an input argument type is that the user can add multiple tasks
at once. The Listing 6.7 shows how to add 4 tasks at once. Each input argument of addTask

method has four solitary entries. In problem variable, each row belongs to one task. The MyTask1

and MyTask4 (NSGA-II) and MyTask2 (MOPSO) tasks will have modified settings, while MyTask3

(GDE3) will have all properties set as default. All tasks will have the same userData property
containing cell array with 2 strings.

Note that algorithms variable is row cell array, but it is more convenient to write it as column
array, because addChain method (see Subsection 6.2.1) uses the similar structure, but rows of cell
array are reserved for individual tasks of chain. The same recommendation applies to the settings
and name input arguments.

The number of rows of problem and the number of elements of algorithms, settings and
taskNames must be the same. Problems has to be strictly written in rows as shown in Listing 6.7,
otherwise the string input in the second row of the problem cell array would cause an error.

To create multiple tasks with different userData properties, user needs to add tasks separately
by using multiple-times the addTask method.

Listing 6.7: Creation of multiple tasks with one use of addTask method.

fops = FOPS(); % initialization of FOPS
myTempProblem = struct('limits', [0, 0; 1, 1], 'fitness', @(x)myFitnessF(x));
problem = {...

'MOPOL', []; ...
myTempProblem, []; ...
'MOZDT1', 25; ...
'MODTLZ5', struct('nVars', 8, 'nObjs', 6)};

algorithms = {'NSGAII', 'MOPSO', 'GDE3', 'NSGAII'};
NSGASettings = struct('nIterations', 1000, 'PC', 0.2, 'PM', 0.2);
settings = {...

NSGASettings; ... % this belongs to first task
struct('nAgents', 10, 'W', [0.9, 0.5]); ... % this belongs to second task
[]; ... % this belongs to third task
NSGASettings}; % this belongs to fourth task

taskNames = {'MyTask1'; 'MyTask2'; 'MyTask3'; 'MyTask4'};
userData = {'This userData will', 'be the same for all tasks'};
fops.addTask(problem, algorithms, settings, taskNames, userData)

Control elements which modifies stop conditions of task can also be seen in Figure 5.1. See
Subsection 6.4.1 to learn more about stop conditions.

6.1.2 deleteTask

fops.deleteTask(id)

Inputs:

id cell array of strings or doubles, cell [1 x N]

The method deleteTask has only one input argument - identification (id) of the task to delete.

The Listing 6.8 shows how to delete the task from FOPS. At the beginning, four tasks are
added to FOPS. Task to delete can be identified by its name or by sequence number. Only
MyTask1 remains in FOPS at the end of Listing 6.8 example.
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(a) One task at a time. (b) All tasks at once.

Figure 6.3: Delete task from FOPS in GUI.

Similar action is possible in GUI. Figure 6.3a shows how to delete task from FOPS in GUI.
The Context Menu is displayed by right mouse click in FOPS Tree after selection of task to delete
by left mouse click.

Listing 6.8: Deletion of task by deleteTask method.

fops = FOPS(); % initialization of FOPS
problem = {'MOPOL'; 'MOFON'; 'MOKUR'; 'MOSCH'};
algorithms = {'NSGA-II'; 'MOPSO'; 'GDE3'; 'NSGA-II'};
taskNames = {'MyTask1'; 'MyTask2'; 'MyTask3'; 'MyTask4'};
fops.addTask(problem, algorithms, [], taskNames)
fops.deleteTask(2)
fops.deleteTask('MyTask3')
fops.deleteTask({'MyTask4'})

Listing 6.9 shows how to delete multiple tasks with one command. At the end of an example,
only MyTask3 remains in FOPS.

Listing 6.9: Deletion of multiple tasks by deleteTask method at once.

fops = FOPS(); % initialization of FOPS
problem = {'MOPOL'; 'MOFON'; 'MOKUR'; 'MOSCH'};
algorithms = {'NSGA-II'; 'MOPSO'; 'GDE3'; 'NSGA-II'};
taskNames = {'MyTask1'; 'MyTask2'; 'MyTask3'; 'MyTask4'};
fops.addTask(problem, algorithms, [], taskNames)
fops.deleteTask({'MyTask1', 2, 4})

Note that an effect of three partial calls of deleteTask (See Listing 6.10) instead of the one
used in Listing 6.9 is completely different. By the first call, the first task MyTask1 is deleted. By
the second call of deleteTask, the task MyTask3 is deleted, because it now has sequence number
of 2. The third call of deleteTask would cause an error, because only two tasks remains in the
FOPS object.

Listing 6.10: Deletion of multiple tasks by multiple deleteTask method calls.

...
fops.deleteTask('MyTask1')
fops.deleteTask(2)
fops.deleteTask(4)

Figure 6.3b shows how to delete all tasks at once from FOPS in GUI. This Context Menu is
called by selecting Tasks group and right mouse button click.
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Figure 6.4: Rename task in FOPS in GUI.

6.1.3 renameTask

fops.renameTask(oldName, newName)

Inputs:

oldName existing task id, cell of strings or doubles, cell [1 x N]

newName new task name, cell of strings, cell [1 x N]

Tasks already added to FOPS can also be renamed. The method renameTask has two input
arguments. The first argument is a current name of task and the second argument is a new name
of task.

In Listing 6.11, the task named badTaskName is added to FOPS and afterwards it is renamed
to newTaskName. Note that oldName is simple string, while newName is cell array. Both options are
possible to both input arguments. The corresponding action done in GUI is shown in Figure 6.4.

Listing 6.11: Rename task by renameTask method.

fops = FOPS(); % initialization of FOPS
fops.addTask('MOFON', 'GDE3', [], 'badTaskName')
fops.renameTask('badTaskName', {'newTaskName'})

Input arguments are cell arrays due to a possibility of renaming multiple tasks at once as shown
in Listing 6.12. Both input arguments are cell arrays with the same number of cells.

Listing 6.12: Rename multiple tasks at once by renameTask method.

fops = FOPS(); % initialization of FOPS
problem = {'MOPOL'; 'MOFON'; 'MOKUR'; 'MOSCH'};
algorithms = {'NSGA-II'; 'MOPSO'; 'GDE3'; 'NSGA-II'};
taskNames = {'MyTask1'; 'MyTask2'; 'MyTask3'; 'MyTask4'};
fops.addTask(problem, algorithms, [], taskNames)
fops.renameTask({'MyTask1', 'MyTask3', 'MyTask4'}, ...

{'newNameOfTask1', 'newNameOfTask3', 'newNameOfTask4'})
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(a) All tasks at once. (b) One task at a time.

Figure 6.5: Run task in FOPS in GUI.

6.1.4 runTask

fops.runTask(id)

Inputs:

id optional, cell array of strings or doubles, cell [1 x N]

Previously created tasks are run by the method runTask. The method runTask has one optional
input argument, which defines the task to be run. If no input argument is given, all tasks in FOPS
are run (see Listing 6.13). Figure 6.5a shows how this can be done in FOPS GUI.

Listing 6.13: Run all tasks by runTask method.

fops = FOPS(); % initialization of FOPS
problem = {'MOPOL'; 'MOFON'; 'MOKUR'; 'MOSCH'};
algorithms = {'NSGA-II'; 'MOPSO'; 'GDE3'; 'NSGA-II'};
taskNames = {'MyTask1'; 'MyTask2'; 'MyTask3'; 'MyTask4'};
fops.addTask(problem, algorithms, [], taskNames)
fops.runTask()

Listing 6.14 shows how to run chosen tasks. Four tasks were added to the FOPS. First call
of runTask method runs the third task identified by its name. Plain string (without cell brackets)
as an input is again possible. The second call of runTask method runs first task identified by the
sequence number. The last call of the runTask method shows how to call multiple tasks at once.
Figure 6.5b shows how to run an individual task.

Listing 6.14: Run individual tasks by runTask method.

fops = FOPS(); % initialization of FOPS
problem = {'MOPOL'; 'MOFON'; 'MOKUR'; 'MOSCH'};
algorithms = {'NSGA-II'; 'MOPSO'; 'GDE3'; 'NSGA-II'};
taskNames = {'MyTask1'; 'MyTask2'; 'MyTask3'; 'MyTask4'};
fops.addTask(problem, algorithms, [], taskNames)
fops.runTask('MyTask3') % will run third task
fops.runTask({1}) % will run first task
fops.runTask({'MyTask2', 4}) % will run remaining tasks

6.1.5 changeTaskSettings

fops.changeTaskSettings(id, varargin)
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Inputs:

id cell array of strings or doubles, cell [1 x N]

varargin task settings. File name with path, settings struct or property-values pairs

This method changes properties of task that is already in FOPS object (see Section 7.1 to
learn more about task properties). This method has variable number of input arguments. The first
input argument always identifies the task to be changed (id). Following input arguments define
properties to be changed. There are three ways to define task properties:

� Struct: Method changeTaskSettings has two input arguments in this case, where the second
input argument is of type struct. Listing 6.15 shows how the settings struct is created.

� File: task settings is defined by content of a text file. The text file is identified by name.
Therefore, the changeTaskSettings method has also two input arguments, where the second
input argument is of type char. Setting files has to be listed in taskSettingsList property
of FOPS object. See Listings 6.16 and 6.17 to see how the settings file is defined.

� Property-value pairs: In this case, property entries are strings similar to the field names of
struct (see Section 7.1). Method changeTaskSettings has odd number of input arguments
(including id argument). See Listing 6.18 to see how to use the property-value pairs input
type.

Listing 6.15 shows how to change task’s settings using settings struct. In an example, default
settings (assigned in addTask method) of two NSGA-II tasks are altered. The cell array brackets
are used in first changeTaskSettings call. It is NOT possible to change settings of multiple tasks
at once, as the identification of task (id) in cell array might suggest. Cell array is needed for
identification of task in chain or comparative study (See later in subsections 6.1.7 and ??).

Listing 6.15: Change task’s settings using settings struct.

fops = FOPS(); % initialization of FOPS
problem = {'MOPOL'; 'MOFON'; 'MOKUR'; 'MOSCH'};
algorithms = {'NSGA-II'; 'MOPSO'; 'GDE3'; 'NSGA-II'};
taskNames = {'MyTask1'; 'MyTask2'; 'MyTask3'; 'MyTask4'};
settings = struct('nIterations', 10, 'BP', 10);
settings.nAgents = 1000;
fops.addTask(problem, algorithms, [], taskNames)
fops.changeTaskSettings({1}, settings)
fops.changeTaskSettings('MyTask4', struct('PC', 0.5, 'nAgents', 200))

Listing 6.16 shows the usage of text file with algorithm settings. File changeGDE3settings.txt
has to be listed in taskSettingsList property of FOPS (current path and taskSettingsFiles

folders are scanned during FOPS object initialization by default). The content of the text file is
shown in Listing 6.17. Note that strings of algorithm parameters (nIters, nAgents, etc.) has to
be a single string (without whitespaces), otherwise the second string is taken as a parameter value

and an error might occur. An icon in Figure 6.6 can be used to load the algorithm settings from
the text file to Settings Figure of GUI.

Listing 6.16: Change task’s settings using setting file.

fops = FOPS(); % initialization of FOPS
fops.addTask('MOFON', 'GDE3', [], 'MyTask')
filename = 'changeGDE3settings.txt';
fops.changeTaskSettings('MyTask', filename);

Listing 6.17: Content of settings file changeGDE3settings.txt.

% changeGDE3Settings file content
algorithm: GDE3
nIters: 10
nAgents: 20
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Figure 6.6: Change task’s settings in GUI.

F: 1.5
PC: 0.1

Listing 6.18 shows how to use the property-value input type when calling changeTaskSettings

method. Number of agents (nAgents), probability of crossover (PC) and binary precision (BP) of
NSGA-II task is altered. Note that binary precision (BP) value is a vector of three elements. This
allows to set different BP for each decision variable of a problem. The number of elements in BP

vector has to match the number of decision variables of problem (in this case MOFON problem).

Listing 6.18: Change task’s settings using property - value pairs.

fops = FOPS(); % initialization of FOPS
fops.addTask('MOFON', 'NSGA-II')
fops.changeTaskSettings(1, 'nAgents', 150, 'PC', 0.3, 'BP', [15, 5, 10]);

Figure 6.6 shows how to change task’s settings in GUI. After clicking on Change tasks settings

entry of selected task from Context Menu, figure Change task settings is displayed.

6.1.6 changeTaskSettings of task in chain

Listing 6.19 shows how to change the settings of an algorithm in chain (see Section 6.2 to learn
more about chain methods). The chain MyChain contains two tasks, NSGA-II and GDE3. Method
changeTaskSettings changes number of agents (nAgents) and probability of crossover (PC) of the
first task in the first chain. All elements of identification (id) can be either strings with simulation
names or sequence number of individual simulations. Each call of changeTaskSettings method
does identical operation (second and third call is only for the demonstration purpose, otherwise
are useless/duplicate). The name task1 is a default name of the first task in chain (note that
FOPS automatically concatenates the default task name (task1) with algorithm type (NSGA-II)
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for better orientation in FOPS Tree of GUI, but it is still possible to identify the task of chain by
simple task1 name). MyChain is the first chain in FOPS.

Listing 6.19: Change settings of task in chain.

fops = FOPS(); % initialization of FOPS
fops.addChain({'MODTLZ1'}, {'NSGAII', 'GDE3'}, [], 'MyChain')
fops.changeTaskSettings({1, 1}, 'nAgents', 150, 'PC', 0.3);
fops.changeTaskSettings({'MyChain', 1}, 'nAgents', 150, 'PC', 0.3);
fops.changeTaskSettings({'MyChain', 'task1'}, 'nAgents', 150, 'PC', 0.3);

6.1.7 changeTaskSettings of task in chain in comparative study

Listing 6.20 shows how to change settings of task in chain in comparative study (see Section 6.3
to learn more about comparative study methods). Comparative study MyCS contains three chains.
Method changeTaskSettings changes number of agents (nAgents) and probability of crossover
(PC) of first task in second chain of MyCS comparative study. All elements of identification (id)
can be either strings with simulation names or sequence number of individual simulations. Note
that in it is necessary to differentiate between chains and unique chains in comparative study. If
changeTaskSettings is called once, it changes all the occurrences of corresponding unique chain.
See what the unique chain means in the Section 6.3. Also note, that the FOPS automatically
concatenates the default chain name (chain1) with the problem name for better orientation in the
FOPS Tree of GUI, but it is still possible to identify the chain in CS by simple chain1 name)

Listing 6.20: Change settings of task in chain in comparative study.

fops = FOPS(); % initialization of FOPS
chains = {'NSGAII', 'GDE3'; 'MOPSO', []; 'MOPSO', 'NSGAII'};
nRuns = 2; requests = []; settings = [];
fops.addCompStudy('MODTLZ1', chains, nRuns, requests, settings, 'MyCS')
fops.changeTaskSettings({'MyCS', 'chain2', 'task1'}, 'nAgents', 150, 'C1', 0.3);

26



CHAPTER 6. FOPS METHODS

6.2 Chain Methods

FOPS methods that works with chains are very similar to the methods related to task.

6.2.1 addChain

fops.addChain(problem, algorithms, settings, name, userData)

Inputs:

problem cell [N x 1] or cell [N x 2]

algorithms cell [N x M]

settings optional, cell array of structs, cell [N x M]

name optional, cell [N x 1]

userData optional, cell [1 x 1]

Method addChain has 5 input arguments: problem, algorithms, settings, name and userData.
First two arguments are obligatory while the remaining three are optional, but has to remain in
a given order.

problem is defined as a cell with struct with fields presented in Chapter 4 or as a cell with name
of problem function (m-file) which returns such struct.

algorithms argument defines optimization methods that will be exploited on a single optimiza-
tion problem one after another.

settings argument specifies parameters of optimization algorithms. It involves number of
agents (nAgents), number of iterations (nIters) and algorithm dependent parameters such as
probability of mutation (PM), inertia weight (W) etc. It is a cell array of structs with field names
suggesting type of parameter (see Section 7.1).

name is a unique chain name. Such names are shown in the FOPS Tree (see Figure 5.1) and are
used to identify chains in FOPS.

Last input argument is userData, which holds user’s entries. It can be employed by user in
fitness function if fullControl property of problem is set to true (see Section 4.16). Argument
userData will be passed to elementary OptTasks in Chain object. Property userData of all tasks
in chain will be identical.

A minimal working example of chain creation is shown in Listing 6.21. Note that a chain with
only one task is possible, but it has no particular meaning to use such a chain. All input arguments
are supposed to be cell arrays, but if cell array brackets are omitted, input is automatically converted
to a cell array. Therefore, both variants in Listing 6.21 are actually identical. Default task’s settings
and chain name is assigned if no settings and chain name is entered.

Listing 6.21: Minimal working example of addChain method.

fops = FOPS(); % initialization of FOPS
fops.addChain('MOFON', 'NSGA-II')
fops.addChain('MOFON', {'NSGA-II'})

In Listing 6.22, a chain with three algorithms is added and some algorithm’s parameters and
chain name are specified. Property userData is also entered. First and second tasks will have
1000 agents and will perform 10 iterations. Both, NSGA-II and GDE3, algorithms have probability
of crossover (PC) set to 0.3. Third algorithm, the MOPSO one, will be set as default along with
unspecified NSGA-II and GDE3 properties. See Section 7.1 to learn more about task’s properties.

Listing 6.22: Add completely specified chain with addChain method.

fops = FOPS(); % initialization of FOPS
mySet = struct('nIterations', 10, 'PC', 0.3);
mySet.nAgents = 1000;
chainName = 'myNewChain';
userData = {[1, 2, 3], [4, 5, 6]};
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Figure 6.7: Add chain to FOPS and define algorithms’ settings in GUI.

fops.addChain(...
{'MODTLZ3'}, ... % problem
{'NSGA-II', 'GDE3', 'MOPSO'}, ... % algorithms
{mySet, mySet, []}, ... % algoritmh settings
chainName, ...
userData)

The same operation (except for userData) can be done in GUI as shown in Figure 6.7. Algo-
rithms NSGA-II, GDE3 and MOPSO are selected in Algorithms listbox and added to Selected

Algorithms listbox by push button. They can be removed by push button. Problem MOPOL

is selected in Problem popup menu. To alter algorithms settings select one or more algorithms
in Selected Algorithms listbox and click on toggle button. When two or more different
algorithms are present in Selected Algorithms listbox, Algorithm Settings figure shows only
Number of Iterations and Number of Agents fields. Modifications of other parameters has to
be done separately.

It is possible to use one-time problem similarly as shown in Listing 6.5 and also define one-time
problem in GUI by clicking on One-time Problem toggle button (see Figure 6.2).

Some optimization problems can be scalable, which enables user to specify e.g. how many
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decision variables or fitness function the problem has. Listing 6.23 shows how to define number of
decision variables and number of objective functions for problem MODTLZ1 (Definition of MODTLZ1
problem can be seen Listing 4.1). The problem will have 20 decision variables (nVars) and 4 ob-
jective functions (nObjs) and will be optimized by chain of algorithms consisting of MOPSO and
GDE3.

The Listing 6.23 shows how to exploit problem function input argument by FOPS methods.
Problem input argument can be either scalar number or struct. Input argument of problem cannot
be defined from FOPS GUI.

Listing 6.23: Define number of decision variables and number of objective of problem in chain.

fops = FOPS(); % initialization of FOPS
fops.addChain({'MODTLZ1', struct('nVars', 20, 'nObjs', 4)}, {'MOPSO', 'GDE3'})

User can add multiple chains using addChain method just once. The Listing 6.24 shows how to
add 4 chains at once. In problem variable, each row belongs to one chain. Empty cell of settings
cell array stands for default settings of corresponding task. All tasks in chain will have identical
userData property containing cell array with 2 strings.

When adding 4 chains at once, problem cell has to have 4 rows and 1 or two columns,
algorithms cell has to have again 4 rows and arbitrary number of columns, settings cell has
to be of same size as algorithms cell and name cell has to have 4 elements. Problems has to be
strictly written in rows as shown in Listing 6.24, otherwise string input in second row of problem
cell array would cause an error.

To create multiple chains with different userData properties user needs to add chains separately
by using multiple-times addChain method.

Listing 6.24: Add 4 chain at once with method addChain.

fops = FOPS(); % initialization of FOPS
myTempProblem = struct('limits', [0, 0; 1, 1], 'fitness', @(x)myFitnessF(x));
problem = {...

'MOPOL', [];...
myTempProblem, [];...
'MOZDT1', 25; ...
'MODTLZ5', struct('nVars', 8, 'nObjs', 6)};

algorithms = {...
'NSGAII', 'MOPSO', 'GDE3'; ... % chain 1
'MOPSO', 'GDE3', []; ... % chain 2
'NSGAII', [], []; ... % chain 3
'MOPSO', [], []}; % chain 4

NSGAIIset = struct('nIterations', 1000, 'PC', 0.2, 'PM', 0.2);
MOPSOset = struct('nAgents', 1000, 'C1', 0.2, 'C2', 0.2);
GDE3set = struct('F', 1.5);
settings = {...

NSGAIIset, [], GDE3set; ... % this belongs to first chain
MOPSOset, [], [] ; ... % this belongs to second chain
[], [], [] ; ... % this belongs to third chain
MOPSOset, [], []}; % this belongs to fourth chain

name = {'MyChain1'; 'MyChain2'; 'MyChain3'; 'MyChain4'};
userData = {'This userData will', 'be the same for all chains'};
fops.addChain(problem, algorithms, settings, name, userData)

In Figure 6.7 can be seen control elements which modifies stop conditions of tasks in chain. See
Subsection 6.4.1 to learn more about stop conditions.

6.2.2 deleteChain

fops.deleteChain(id)

Inputs:

id cell array of strings or doubles, cell [1 x N]
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(a) One chain at a time. (b) All chains at once.

Figure 6.8: Delete chain from FOPS in GUI.

Method deleteChain has only one input argument - identification (id) of chain to delete.
Listing 6.25 shows how to delete chain from FOPS. At the beginning, four chains are added

to FOPS. Chains to delete can be identified by its name or by sequence number in FOPS. Only
MyChain1 remains in FOPS at the end of Listing 6.25.

Listing 6.25: Delete chain from FOPS with method deleteChain.

fops = FOPS(); % initialization of FOPS
problem = {'MOPOL'; 'MOFON'; 'MOKUR'; 'MOSCH'};
algorithms = {...

'NSGAII', 'MOPSO', 'GDE3'; ... % chain 1
'MOPSO', 'GDE3', []; ... % chain 2
'NSGAII', [], []; ... % chain 3
'MOPSO', [], []}; % chain 4

chainNames = {'MyChain1'; 'MyChain2'; 'MyChain3'; 'MyChain4'};
fops.addChain(problem, algorithms, [], chainNames)
fops.deleteChain(2)
fops.deleteChain('MyChain3')
fops.deleteChain({'MyChain4'})

Similar action is possible using GUI. Figure 6.8a shows how to delete chain from FOPS in GUI.
The Context Menu is displayed by right mouse click in the FOPS Tree after selection of chain to
delete by left mouse click.

Listing 6.26 shows how to delete multiple chains with one command. At the end of Listing 6.26
only MyChain3 is present in FOPS. Figure 6.8b shows how to delete all chains at once from FOPS
in GUI. This Context Menu is called by selecting Chains group and right mouse button click.
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Listing 6.26: Delete multiple chains from FOPS at once with method deleteChain.

fops = FOPS(); % initialization of FOPS
problem = {'MOPOL'; 'MOFON'; 'MOKUR'; 'MOSCH'};
algorithms = {...

'NSGAII', 'MOPSO', 'GDE3'; ... % chain 1
'MOPSO', 'GDE3', []; ... % chain 2
'NSGAII', [], []; ... % chain 3
'MOPSO', [], []}; % chain 4

chainNames = {'MyChain1'; 'MyChain2'; 'MyChain3'; 'MyChain4'};
fops.addChain(problem, algorithms, [], chainNames)
fops.deleteChain({'MyChain1', 2, 4})

Note that an effect of three partial calls of deleteChain (See Listing 6.27) instead of one call
in 6.26 is completely different. By first call, first chain MyChain1 is deleted. By second call of
deleteChain, the chain MyChain3 is deleted, because it now has sequence number of 2. Third call
of deleteChain would cause an error, because only two chains remains in FOPS object.

Listing 6.27: Three partial use of deleteChain leads to different output.

...
fops.deleteChain('MyChain1')
fops.deleteChain(2)
fops.deleteChain(4)

6.2.3 renameChain

fops.renameChain(oldName, newName)

Inputs:

oldName existing chain name, cell of strings or doubles, cell [1 x N]

newName new chain name, cell of strings, cell [1 x N]

Chains already added to FOPS can also be renamed. Method renameChain has two input ar-
guments. The first argument (oldName) is a current name of chain and second argument (newName)
contains new name of chain.

In Listing 6.28, chain named badChainName is added to FOPS and afterwards it is renamed to
newChainName. Note that oldName is simple string, while newName is cell array. Both options are
possible to both input arguments. The corresponding action done in GUI is shown in Figure 6.9.

Listing 6.28: Rename chain named badChainName to newChainName.

fops = FOPS(); % initialization of FOPS
fops.addChain('MOFON', {'GDE3', 'MOPSO'}, [], 'badChainName')
fops.renameChain('badChainName', {'newChainName'})

Input arguments are originally cell arrays due to possibility of renaming multiple chains at once
as shown in Listing 6.29. Both input arguments (oldName and newName) are cell arrays with the
same number of cells.

Listing 6.29: Rename multiple chains at once.

fops = FOPS(); % initialization of FOPS
problem = {'MOPOL'; 'MOFON'; 'MOKUR'; 'MOSCH'};
algorithms = {...

'NSGAII', 'MOPSO', 'GDE3'; ... % chain 1
'MOPSO', 'GDE3', []; ... % chain 2
'NSGAII', [], []; ... % chain 3
'MOPSO', [], []}; % chain 4

chainNames = {'MyChain1'; 'MyChain2'; 'MyChain3'; 'MyChain4'};
fops.addChain(problem, algorithms, [], chainNames)
fops.renameChain({'MyChain1', 'MyChain3', 'MyChain4'}, ...

{'newNameOfChain1', 'newNameOfChain3', 'newNameOfChain4'})
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Figure 6.9: Rename chain in FOPS in GUI.

6.2.4 runChain

fops.runChain(id)

Inputs:

id optional, cell array of strings or doubles, cell [1 x N]

Previously created chains are run by method runChain. Method runChain has one optional
input argument (id) which defines chain to be run. If no input argument is given, all chains in
FOPS will be run (see Listing 6.30). Figure 6.10a shows how all chains can be run in FOPS GUI.

Listing 6.30: Run all chains in FOPS.

fops = FOPS(); % initialization of FOPS
problem = {'MOPOL'; 'MOFON'; 'MOKUR'; 'MOSCH'};
algorithms = {...

'NSGAII', 'MOPSO', 'GDE3'; ... % chain 1
'MOPSO', 'GDE3', []; ... % chain 2
'NSGAII', [], []; ... % chain 3
'MOPSO', [], []}; % chain 4

chainNames = {'MyChain1'; 'MyChain2'; 'MyChain3'; 'MyChain4'};
fops.addChain(problem, algorithms, [], chainNames)
fops.runChain()

Listing 6.31 shows how to run chosen chains. Four chains were added to FOPS. First call of
runChain method runs third chain identified by name MyChain3. A plain string as an input is
possible. Second call of runChain method runs first chain identified by sequence number. Last call
of runChain method shows how to call multiple chains at once. Figure 6.10b shows how to run
individual chain.
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(a) All chains at once. (b) One chain at a time.

Figure 6.10: Run chain in FOPS in GUI.

Listing 6.31: Run individual chain in FOPS.

fops = FOPS(); % initialization of FOPS
problem = {'MOPOL'; 'MOFON'; 'MOKUR'; 'MOSCH'};
algorithms = {...

'NSGAII', 'MOPSO', 'GDE3'; ... % chain 1
'MOPSO', 'GDE3', []; ... % chain 2
'NSGAII', [], []; ... % chain 3
'MOPSO', [], []}; % chain 4

chainNames = {'MyChain1'; 'MyChain2'; 'MyChain3'; 'MyChain4'};
fops.addChain(problem, algorithms, [], chainNames)
fops.runChain('MyChain3') % will run third chain
fops.runChain({1}) % will run first chain
fops.runChain({'MyChain2', 4}) % will run remaining chains

6.2.5 changeChainSettings

fops.changeChainSettings(id, varargin)

Inputs:

id cell array of strings or doubles, cell [1 x N]

varargin chain settings. Settings struct or property-values pairs

This method changes properties of chain that is already in FOPS object. Basically, only
problem and algorithms in chain can be changed. This method has variable number of input
arguments. The first input argument always identifies chain (id) of which settings will be changed.
Other input arguments define properties to be changed (varargin). There are two ways to define
chain settings:

� Struct: struct with fields problem or algorithms. Method changeChainSettings has two
input arguments in this case, where the second input argument is of type struct.
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� Property-value pairs: In this case, property entries are strings problem or algorithms.
Method changeChainSettings has odd number of input arguments (including chain id ar-
gument).

Listing 6.32 shows how to change problem of chain using struct. Initially, a problem of the
chain is MOZDT1, but it is changed to MOZDT6 problem. Chain identification (id) is a cell array, but
it is also possible to omit the cell array brackets. It is NOT possible to change settings of multiple
chains at once, as the identification of chain (id) in cell array might suggest. Cell array is needed
for identification of chain in comparative study (See later in this section in Listing 6.37).

Listing 6.32: Change problem of chain from MOZDT1 to MOZDT6.

fops = FOPS(); % initialization of FOPS
fops.addChain({'MOZDT1'}, {'NSGAII', 'MOPSO', 'GDE3'}, [], {'chainToModify'});
fops.changeChainSettings({'chainToModify'}, struct('problem', 'MOZDT6'));

Listing 6.33 shows how to change a problem of chain and specify its input arguments (Definition
of MODTLZ1 problem can be seen in Listing 4.1). Note that there are double cell array brackets.
It is necessary to ensure that the input struct has only one element, because the struct problem

created in Listing 6.34 is of size [1 x 2] which is unsuitable for changeChainSettings method.

Listing 6.33: Change problem of chain and specify problem input arguments.

fops = FOPS(); % initialization of FOPS
fops.addChain({'MOZDT2'}, {'NSGAII', 'MOPSO', 'GDE3'}, [], {'chainToModify'});
problem = {{'MODTLZ1', struct('nVars', 25, 'nObjs', 5)}};
fops.changeChainSettings({'chainToModify'}, struct('problem', problem));

Listing 6.34: Invalid problem struct if cell brackets are omitted.

problem = {'MODTLZ1', struct('nVars', 25, 'nObjs', 5)}

Listing 6.35 shows how to change algorithms in chain using property-value pairs.

Listing 6.35: Change tasks in chain using property-value pair.

fops = FOPS(); % initialization of FOPS
fops.addChain({'MOZDT1'}, {'NSGAII', 'MOPSO', 'GDE3'}, [], {'chainToModify'});
fops.changeChainSettings({'chainToModify'}, 'algorithms', {'GDE3', 'MOPSO'});

Listing 6.36 shows how to change a problem of chain and specify the number of decision variables.
Note that in this case only one set of cell array brackets is required.

Listing 6.36: Change problem of chain and specify input arguments by property - value pair.

fops = FOPS(); % initialization of FOPS
fops.addChain({'MOZDT1'}, {'NSGAII', 'MOPSO', 'GDE3'}, [], {'chainToModify'});
fops.changeChainSettings({'chainToModify'}, 'problem', {'MOZDT4', 20});

Listing 6.37 shows how to change algorithms of unique chain in comparative study (see Section
6.3 to learn more about comparative study methods). Comparative study has 2 chains: first chain
contains MOPSO and NSGA-II tasks and second chain contains NSGA-II and GDE3 tasks. There
are three problems in comparative study and number of runs is four, therefore the chains property
of comparative study will be of size [4 x 6] (4 - nRuns, 6 - 2 unique chains times 3 problems).
Method changeChainSettings changes algorithms of first unique chain. If there are multiple
problems and/or multiple runs in comparative study, the changes of unique chain are executed
for all occurences of unique chain in comparative study. It is not possible to change problem of
individual chain in comparative study, because it would cause inconsistency in CompStudy object.
Use changeCompStudySettings method instead (see Subsection 6.3.5).
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Figure 6.11: Change chain’s settings in GUI.

Listing 6.37: Change problem and algorithms of chain in comparative study.

fops = FOPS(); % initialization of FOPS
chains = {'MOPSO', 'NSGAII'; 'NSGAII', 'GDE3'};
problems = {'MOZDT1'; 'MOPOL'; 'MOSCH'};
nRuns = 4; requests = []; settings = [];
fops.addCompStudy(problems, chains , nRuns, requests, settings, 'CSToModify');
fops.changeChainSettings({'CSToModify', 1}, 'algorithms', {'GDE3', 'NSGA-II', 'MOPSO'})

Note that identification of chain (id) in changeChainSettings method in Listing 6.37 is cell
array of two elements, where the first element is an identification of a comparative study, while the
second element is an identification of a chain in comparative study CSToModify. All the elements
of identification (id) can be either strings with simulation names or sequence number of individual
simulations. Listing 6.38 shows all the possibilities how to identify an identical chain. Name chain1
is a default name of the first chain in the comparative study. CSToModify is the first comparative
study in FOPS.

Also note that the FOPS automatically concatenates default chain name (chain1) with the
problem (e.g. MOPOL) for better orientation in FOPS Tree of GUI, but it is still possible to identify
chain in comparative study by simple chain1 name.

Listing 6.38: Possible ways how to identify first chain of comparative study in FOPS.

...
fops.changeChainSettings({'CSToModify', 'chain1'}, ...
...
fops.changeChainSettings({1, 1}, ...
...
fops.changeChainSettings({1, 'chain1'}, ...
...
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Figure 6.11 shows how to change chain settings in FOPS GUI. Context Menu is induced by
right mouse click on previously selected chain. After selecting Change chain’s settings in the
Context Menu, tab Chain, originally for adding chains, is transformed to change settings mode
(control elements of name, algorithm settings and stop conditions are hidden). This suggest the
drawback of changeChainSettings method: if algorithms are changed, they are initialized with
default settings and default stop condition (stop when nIterations is reached).

To change settings of tasks in chain, changeTaskSettings method has to be used (see Subsec-
tion 6.1.5, particularly Listing 6.19). Stop conditions can be added by addStopCondition method
(see Subsection 6.4.1).
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6.3 Comparative Study Methods

6.3.1 addCompStudy

fops.addCompStudy(problem, chain, nRuns, metrics, settings, name, userData)

Inputs:

problem cell [N x 1] or cell [N x 2]

chain cell [X x Y]

nRuns optional, number of runs (repetitions), double [1 x 1]

metrics optional, cell array of string, cell [M x 1]

settings optional, cell array of structs, cell [X x Y]

name optional, unique name of comparative study, cell [1 x 1]

userData optional, cell [1 x 1]

Method addCompStudy has 7 input arguments: problem, algorithm, nRuns, metrics, settings,
name and userData. First two input arguments are obligatory while the remaining five are optional,
but has to remain in a given order.

The problem is defined as cell array with names of problem functions (m-files) or problem struct
(see Chapter 4 for more info about problem definition).

The chain defines unique chains that will be processed by comparative study (“unique chain”
suggests, that the chain will be repeated in chains property of CompStudy object according to
the number of problems. Each repetition will have different problem assigned).

The nRuns defines the number of repetitions of all the elementary simulations in comparative
study.

The metrics is a cell array of metric names (see Chapter 8).

The settings argument defines parameters of optimization algorithms in unique chains. It has
to have the same dimensions as the chains property. It is a cell array of structs with field names
suggesting types of parameters (see Section 7.1 for more info about task settings).

The name is a unique comparative study name. Such names are shown in FOPS Tree (see
Figure 5.1) and are used to identify comparative studies.

Last input argument is userData, which can hold user’s entries. It can be employed by user in
fitness function if fullControl property of problem is set to true (see Section 4.16).

A minimal working example of adding comparative study can be seen in Listing 6.39. Only
problem and chain input arguments are specified. First and third problems were predefined
(benchmark problems) while the second one is a one-time problem. The first chain has three
tasks and the second chain has only one task. In the chains property of CompStudy object will
be created 6 different chains. They are all possible combinations of the two unique chains and
three problems inserted to the addCompStudy method. The nRuns will be 1 by default, algorithm
settings (see Section 7.1) and comparative study name will be also set as default. No metrics

will be calculated.

Listing 6.39: Minimal working example of addCompStudy method.

fops = FOPS(); % initialization of FOPS
problemStruct = struct('limits', [0, 0;1, 1], 'fitness', @(x)Myfitness(x));
fops.addCompStudy(...

{'MOZDT1'; problemStruct; 'MOZDT3'}, ... problems
{'NSGAII', 'MOPSO', 'GDE3'; ... algorithms: chain1
'NSGAII', [], []}) ... % algorithms: chain2

Listing 6.40 shows all the features of comparative study.

The variable problem is a cell array, with arbitrary number of rows. The second column of
problem serves for input arguments of problem functions (see Chapter 4 or Listing 6.6 for more
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Figure 6.12: Structure of chains property of comparative study in FOPS from Listing 6.40.

info about problem function input arguments). Therefore, fourth problem MODTLZ5 will have 8

decision variables and 6 objective functions.

Variable chain is a cell array with names of optimization algorithms, that will be employed by
comparative study. Each row of cell array stand for one unique chain.

Variable nRuns denotes that each chain in comparative study will be run 2 times. Argument
nRuns is for statistical purposes.

After the comparative study is run, property results of CompStudy object, will in this case
contains fields GD (generational distance) and T (computational time).

The dimensions of settings variable follows the dimensions of chain variable. Empty cell
in settings cell array results in default algorithm settings (see Section 7.1 to learn more about
default task properties values).

MyCS string stands for comparative study’s unique name.

Input argument userData is copied to every task in every chain of comparative study.

The chains property of comparative study in FOPS object will contain array of Chain objects
of size [12 x 5]. Number 12 is a product of number of problems (4 - problem variable) and number
of unique chains (3 - chain variable). Number 5 indicates number of repetitions of every chain
in comparative study (nRuns = 5). Figure 6.12 shows the chains property of comparative study
created in Listing 6.40.

Listing 6.40: Add completely defined comparative study.

fops = FOPS(); % initialization of FOPS
myTempProblem = struct('limits', [0, 0; 1, 1], 'fitness', @(x)MyFitness(x));
problem = {...

'MOPOL', [];...
myTempProblem, [];...
'MOZDT1', 25; ...
'MODTLZ5', struct('nVars', 8, 'nObjs', 6)};

chain = {...
'NSGAII', 'MOPSO', 'GDE3'; ... % chain 1
'MOPSO', 'GDE3', []; ... % chain 2
'NSGAII', [], []}; ... % chain 3

nRuns = 5;
metrics = {'GD', 'computationalTime'};
NSGAIIset = struct('nIterations', 1000, 'PC', 0.2, 'PM', 0.2);
MOPSOset = struct('nAgents', 1000, 'C1', 0.2, 'C2', 0.2);
GDE3set = struct('F', 1.5);
settings = {...

NSGAIIset, [], GDE3set; ... % this belongs to first chain
MOPSOset, [], [] ; ... % this belongs to second chain
[], [], []}; ... % this belongs to third chain

userData = {'This is userData', 'that will be same for all simulations in CS'};
fops.addCompStudy(problem, chain, nRuns, metrics, settings, 'MyCS', userData);

Figure 6.13 shows how to set and add comparative study in FOPS GUI. Algorithms are added
using Algorithm Context Menu, which is cast by selecting a cell in the Algorithms table. As
suggested in Figure 6.13, it is also possible to select multiple cells at once and assign all of them
the same algorithm (use right mouse button to cast Algorithm Context Menu. Algorithms table
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Figure 6.13: Add comparative study to FOPS in GUI.

is expanded by and push buttons.

To alter algorithms settings select one or more algorithms in Algorithms table and click on

toggle button. When two or more different algorithms are selected in Algorithms table, the
Algorithm Settings figure will show only Number of Iterations and Number of Agents fields.
Modifications of other task parameters has to be done separately.

Problems are selected from the Problems listbox and added to Selected Problems listbox by
pushbutton. Problems can be removed by push button. Note that it is not possible to add

one-time problem (see Figure 6.2 to learn what is the one-time problem) in case of comparative
study in GUI mode. Users are encouraged to generate the problem m-file by the problem figure
accessible from task or chain tabs (see Figure 6.2 in Subsection 6.1.1 or Chapter 4 to see how to
create such a function).

Selection of metrics works identically as selection of problems.

6.3.2 deleteCompStudy

fops.deleteCompStudy(id)

Inputs:
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(a) One comparative study at a time. (b) All comparative studies at once.

Figure 6.14: Delete comparative study from FOPS in GUI.

id cell array of strings or doubles, cell [1 x N]

Method deleteCompStudy has only one input argument - identification of comparative study
to delete (id).

Listing 6.41 shows how to delete comparative study from FOPS. At the beginning, four com-
parative studies are added to FOPS. Comparative studies to delete can be identified by its name or
by its sequence number in FOPS object. Only MyCS1 remains in FOPS at the end of Listing 6.41.

Listing 6.41: Delete comparative study from FOPS.

fops = FOPS(); % initialization of FOPS
problem = {'MOPOL'; 'MOFON'};
chain = {...

'MOPSO', 'GDE3'; ... % chain 1
'MOPSO', []}; % chain 2

nRuns = []; metrics = []; settings = [];
fops.addCompStudy(problem, chain, nRuns, metrics, settings, 'MyCS1')
fops.addCompStudy(problem, chain, nRuns, metrics, settings, 'MyCS2')
fops.addCompStudy(problem, chain, nRuns, metrics, settings, 'MyCS3')
fops.addCompStudy(problem, chain, nRuns, metrics, settings, 'MyCS4')
fops.deleteCompStudy(2)
fops.deleteCompStudy('MyCS3')
fops.deleteCompStudy({'MyCS4'})

Similar action is possible using GUI. Figure 6.14a shows how to delete comparative study from
FOPS in GUI. The context menu is displayed by right mouse click in FOPS Tree after selection
of comparative study to delete by left mouse click.

Listing 6.42 shows how to delete multiple comparative studies with one command. At the end
of Listing 6.42 only MyCS3 remains in FOPS.

Listing 6.42: Delete multiple comparative studies from FOPS at once.
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fops = FOPS(); % initialization of FOPS
problem = {'MOPOL'; 'MOFON'};
chain = {...

'MOPSO', 'GDE3'; ... % chain 1
'MOPSO', []}; % chain 2

nRuns = []; metrics = []; settings = [];
fops.addCompStudy(problem, chain, nRuns, metrics, settings, 'MyCS1')
fops.addCompStudy(problem, chain, nRuns, metrics, settings, 'MyCS2')
fops.addCompStudy(problem, chain, nRuns, metrics, settings, 'MyCS3')
fops.addCompStudy(problem, chain, nRuns, metrics, settings, 'MyCS4')
fops.deleteCompStudy({'MyCS1', 2, 4})

Note that an effect of three partial calls of deleteCompStudy (See Listing 6.43) instead of the
one used in Listing 6.42 is completely different. By the first call, the first comparative study MyCS1

is deleted. By the second call of deleteCompStudy, the comparative study MyCS3 is deleted, because
it now has sequence number 2. The third call of deleteCompStudy would cause an error, because
only two comparative studies remains in FOPS object.

Listing 6.43: Three partial calls of deleteCompStudy method.

...
fops.deleteCompStudy('MyCS1')
fops.deleteCompStudy(2)
fops.deleteCompStudy(4)

Figure 6.14b shows how to delete all comparative studies at once from FOPS in GUI. This
Context Menu is called by selecting Comparative studies group and right mouse button click.

6.3.3 renameCompStudy

fops.renameCompStudy(oldName, newName)

Inputs:

oldName existing comparative study name, cell of strings or doubles, cell [1 x N]

newName new comparative study name, cell of strings, cell [1 x N]

Comparative study already added to FOPS can also be renamed. Method renameCompStudy

has two input arguments. The first argument is a current name of comparative study and second
argument contains new name of comparative study.

In Listing 6.44, comparative study named badCSName is added to FOPS and afterwards it is
renamed to newCSName. Note that oldName is a simple string, while newName is a cell array. Both
options are possible to both input arguments. The corresponding action done in GUI is shown in
Figure 6.15.

Listing 6.44: Rename comparative study in FOPS.

fops = FOPS(); % initialization of FOPS
problem = {'MOPOL'; 'MOFON'};
chain = {'MOPSO', 'GDE3'};
nRuns = 1; metrics = []; settings = [];
fops.addCompStudy(problem, chain, nRuns, metrics, settings, 'BadCSName')
fops.renameCompStudy('BadCSName', {'newCSName'})

Input arguments are originally cell arrays due to possibility of renaming multiple comparative
studies at once as shown in Listing 6.45. Both input arguments are cell arrays with the same
number of cells.

Listing 6.45: Rename multiple comparative studies in FOPS at once.

fops = FOPS(); % initialization of FOPS
problem = {'MOPOL'; 'MOFON'}; chain = {'MOPSO', 'GDE3'};
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Figure 6.15: Rename comparative study in FOPS in GUI.

nRuns = 1; metrics = []; settings = [];
fops.addCompStudy(problem, chain, nRuns, metrics, settings, 'MyCS1')
fops.addCompStudy(problem, chain, nRuns, metrics, settings, 'MyCS2')
fops.addCompStudy(problem, chain, nRuns, metrics, settings, 'MyCS3')
fops.addCompStudy(problem, chain, nRuns, metrics, settings, 'MyCS4')
fops.renameCompStudy({'MyCS1', 'MyCS3', 'MyCS4'}, ...

{'newNameOfCS1', 'newNameOfCS3', 'newNameOfCS4'})

6.3.4 runCompStudy

fops.runCompStudy(id)

Inputs:

id optional, cell array of strings or doubles, cell [1 x N]

Previously created comparative studies are run by a runCompStudy method. The method
runCompStudy has one optional input argument, which defines comparative studies to be run (id).
If no input argument is given, all comparative studies are run (see Listing 6.46). Figure 6.16a shows
how this can be done in FOPS GUI.

Listing 6.46: Run all comparative studies in FOPS.

fops = FOPS(); % initialization of FOPS
problem = {'MOPOL'; 'MOFON'}; chain = {'MOPSO', 'GDE3'};
nRuns = 1; metrics = []; settings = [];
fops.addCompStudy(problem, chain, nRuns, metrics, settings, 'MyCS1')
fops.addCompStudy(problem, chain, nRuns, metrics, settings, 'MyCS2')
fops.addCompStudy(problem, chain, nRuns, metrics, settings, 'MyCS3')
fops.addCompStudy(problem, chain, nRuns, metrics, settings, 'MyCS4')
fops.runCompStudy()

Listing 6.47 shows how to run chosen comparative studies. Four comparative studies were
added to FOPS. First call of runCompStudy method runs third comparative study identified by
name (MyCS3). Note that id does not need to be encapsulated in cell array brackets. The second
call of runCompStudy method runs the first comparative study identified by sequence number. Last
call of runCompStudy method shows how to call multiple comparative studies at once.

Listing 6.47: Run comparative study in FOPS.
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(a) All comparative studies at once. (b) One comparative study at a time.

Figure 6.16: Run comparative study in FOPS in GUI.

fops = FOPS(); % initialization of FOPS
problem = {'MOPOL'; 'MOFON'}; chain = {'MOPSO', 'GDE3'};
nRuns = 1; metrics = []; settings = [];
fops.addCompStudy(problem, chain, nRuns, metrics, settings, 'MyCS1')
fops.addCompStudy(problem, chain, nRuns, metrics, settings, 'MyCS2')
fops.addCompStudy(problem, chain, nRuns, metrics, settings, 'MyCS3')
fops.addCompStudy(problem, chain, nRuns, metrics, settings, 'MyCS4')
fops.runCompStudy('MyCS3') % will run third CS
fops.runCompStudy({1}) % will run first CS
fops.runCompStudy({'MyCS2', 4}) % will run remaining CSs

Figure 6.16b shows how to run individual comparative study.

6.3.5 changeCompStudySettings

fops.changeCompStudySettings(id, varargin)

Inputs:

id cell array of strings or doubles, cell [1 x N]

varargin comparative study settings. Settings struct or property-values pairs

This method changes properties of comparative study that is already in FOPS object. Basically,
it can change chains, problems, number of runs (nRuns) or metrics in comparative study (see Section
7.3 to learn more about comparative study settings). This method has variable number of input
arguments. The first input argument (id) always identifies comparative study of which properties
will be changed. Other input arguments define properties to be changed. There are two ways to
define comparative study settings:

� Struct: struct with field name defining what property will be changed and corresponding
content. Method changeCompStudySettings has two input arguments in this case, where
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Figure 6.17: Change settings of comparative study in GUI.

the second input argument is of type struct.

� Property-value pairs: In this case, property entries are strings defining what property will be
changed. Method changeCompStudySettings has odd number of input arguments (including
comparative study id argument).

Listing 6.48 shows how to change problems in comparative study using struct. Initial problem in
comparative study is MOZDT1. Method changeCompStudySettings replaces MOZDT1 problem with
four problems, that have also additional input arguments (see Listing 6.6 in Subsection 6.1.1 or
Chapter 4 for better understanding). The comparative study after the change contains 4 problems
and 2 unique chains and nRuns property is 3. Therefore, the chains property in CompStudy
object will be of size [3 x 8] - 8 chains will be repeated 3 times.

Comparative study identification (id) is a cell array, but it is also possible to omit the cell
array brackets. It is NOT possible to change settings of multiple comparative studies at once, as
the identification input argument in cell array might suggest. Cell array is preserved here only for
the purposes of coherence with task and chain methods. Identification can also be made by the
sequence number of comparative study.

Note that there are two pairs of cell array brackets in a problems field of struct in Listing
6.48 (the first pair in newProblems variable assignment and the second in settingStruct assign-
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ment). It is necessary to ensure that the settingStruct has only one element, because struct
settingsStruct created in Listing 6.49 is of size [4 x 3] and it would cause an error.

Listing 6.48: Change problems in comparative study.

fops = FOPS(); % initialization of FOPS
chain = {'MOPSO', 'NSGAII'; 'NSGAII', 'GDE3'}; % two chains
fops.addCompStudy({'MOZDT1'; 'MOKUR'; 'MOPOL'}, chain, 3, [], [], 'CSToModify');
newProblems = {...

'MOZDT2', ; ...
'MOZDT4', 25; ...
'MOZDT6', []; ...
'MODTLZ1', struct('nObjs', 5)};

settingStruct = struct('problems', {newProblems});
fops.changeCompStudySettings({'CSToModify'}, settingStruct)

Listing 6.49: Invalid settingsStruct with omitted cell array brackets.

settingStruct = struct('problems', newProblems);

Listing 6.50 shows how to add problem to comparative study and change nRuns property.
Initially, the comparative study contains 2 problems and 2 unique chains. Therefore, the chains

property of CompStudy had size of [2 x 4]. Method changeCompStudySettings adds two problems
and changes nRuns property, meaning that the chains property will now have size of [3 x 8].

Listing 6.50: Add problems and change nRuns property of comparative study.

fops = FOPS(); % initialization of FOPS
chain = {'MOPSO', 'NSGAII'; 'NSGAII', 'GDE3'}; % two chains
fops.addCompStudy({'MOZDT1'; 'MOKUR'}, chain, 2, [], [], 'CSToModify');
fops.changeCompStudySettings('CSToModify', ...

struct('addProblems', {{'MOSCH'; 'MOZDT2'}}, 'nRuns', 3))

Listing 6.51 shows how to add new unique chains to comparative study and change metrics
of comparative study. Initially, the comparative study contains 3 problems and 2 unique chains.
Therefore, the chains property of CompStudy had size [2 x 6]. Method changeCompStudySettngs

adds three unique chains and changes metrics (No metrics were present after addCompStudy but
they would have been replaced by changeCompStudySettings method anyway). Property chains

will now have size of [2 x 15].
Note that when there are changes of unique chains (chains or addChains properties) of compar-

ative study (as in Listing 6.51), settings of every algorithm in comparative study is set as default,
even if some chains remained presumably unchanged (occurs when addChains property is used),
because each chain (and its tasks) in comparative study has to be initialized anew.

Listing 6.51: Add chains and change requests in comparative study.

fops = FOPS(); % initialization of FOPS
chain = {'MOPSO', 'NSGAII'; 'NSGAII', 'GDE3'}; % two chains
fops.addCompStudy({'MOZDT1'; 'MOKUR'; 'MOPOL'}, chain, 2, [], [], 'CSToModify');
fops.changeCompStudySettings({'CSToModify'}, ...

'Add chains', {'GDE3', 'MOPSO'; 'NSGAII', []; 'GDE3', []}, ...
'metrics', {'GD', 'HV', 'computationalTime'})

Figure 6.17 shows how to change comparative study settings in FOPS GUI. Context Menu

is induced by the right mouse click on a selected comparative study. After selecting the Change

comparative study’s settings in Context Menu, Comparative Study tab, originally for adding
comparative studies, is transformed to the change settings mode and control elements of name and
algorithm settings are hidden. This suggests that if algorithms are changed, they are initialized
with default settings and the default stop condition (stop when nIterations is reached).

To change settings of tasks in chains of comparative study, changeTaskSettings method has
to be used (see Subsection 6.1.5, particularly Listings 6.20). Stop conditions can be added by
addStopCondition method (see Subsection 6.4.1).
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6.4 Other Methods

6.4.1 addStopCondition

fops.addStopCondition(id, stopCond, isChain)

Inputs:

id cell array of strings or doubles, cell [1 x N]

stopCond stop conditions, handle functions, cell [1 x M]

isChain optional, id is ID of chain, logical [1 x 1]

This method allows the user to define an additional stop condition of task. The default stop
condition for all tasks in FOPS is that a current iteration (currentIter property of OptTask
object) has to be lower than the number of iterations (nIters property of OptTask object).

Stop conditions are inserted as anonymous functions or function handles with two input argu-
ments - current iteration (iter) and fitness values (f).

Method addStopCondition has three input arguments. The first input argument identifies a
task or chain (id), the second argument is a cell array containing the stop conditions (stopCond)
and the third, optional, argument specifies, whether the id input arguments refers to the task or
chain simulation type. If isChain is true, the id represents a path to a chain in FOPS. Otherwise,
the id leads to a task in FOPS. Note that the third input argument is logical, but strings task or
chain are also possible.

Listing 6.52 shows how to add a stop condition to a task. Variable iter denotes the current
iteration and the f denotes the fitness values. Argument iter is a scalar integer, while the f is an
array of doubles of size [nAgents x nObjs]. The stop condition in Listing 6.52 expresses that a task
should be finished, when any second objective function value decreases under 10. Note that both
input arguments (id and stopCond) should be cell arrays, but non-cell inputs are also acceptable.

Listing 6.52: Add stop condition to first task in FOPS.

fops = FOPS(); % initialization of FOPS
fops.addTask('MOZDT4', 'NSGA-II');
stopCond = @(iter, f) min(f(:, 2))<10;
fops.addStopCondition(1, {stopCond});

In Listing 6.53, the stop condition is assigned to the second task of the first chain in FOPS
object. Note that it is also possible to use a string identification of simulations in addStopCondition

method, therefore the command in Listing 6.54 is equivalent to the one in Listing 6.53. Also note
that FOPS automatically concatenates default task or chain names (task2) with the algorithm
type (e.g. MOPSO) or the problem name (e.g. MOPOL) for better orientation in FOPS Tree of GUI,
but it is still possible to identify the task in chain or the chain in comparative study by simple
names such as task1 or chain1.

Listing 6.53: Add stop condition to second task of chain in FOPS.

fops = FOPS(); % initialization of FOPS
fops.addChain('MOZDT4', {'NSGA-II', 'MOPSO'});
stopCond = @(iter, f) min(f(:, 2))<10;
fops.addStopCondition({1, 2}, {stopCond});

Listing 6.54: Equivalent command of addStopCondition method.

fops.addStopCondition({'chain1', 'task2'}, {stopCond});

In Listing 6.55 the stop condition is assigned to both tasks of the first chain in FOPS object. The
third input argument of addStopCondition method suggests, that the 1 as id is an identification
of the chain. Omission of isChain input argument (or isChain = false) would cause an error,
because no task is present in FOPS object (FOPS was initialized anew and only the chain was
added).
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Figure 6.18: Add stop condition to task in chain in comparative study in GUI.

Listing 6.55: Add stop condition to all tasks of chain in FOPS.

fops = FOPS(); % initialization of FOPS
fops.addChain('MOZDT4', {'NSGA-II', 'MOPSO'});
stopCond = @(iter, f) min(f(:, 2))<10;
isChain = true;
fops.addStopCondition(1, {stopCond}, isChain);

Listing 6.56 shows how to add a stop condition to a task of chain in comparative study. The
second task of the first unique chain (the one consisted of NSGA-II and MOPSO algorithms) will have
additional stop condition. Note that chains property in CompStudy object has the size of [3
x 4], because both unique chains are repeated for both problems in the comparative study. The
stop condition will be assigned to the first task in the first and third column of chains (chain1 -

MOZDT4 and chain1 - MOFON).

Listing 6.56: Add stop condition to first task of chain in comparative study in FOPS.

fops = FOPS(); % initialization of FOPS
fops.addCompStudy({'MOZDT4'; 'MOFON'}, {'NSGA-II', 'MOPSO'; 'GDE3', []}, 3);
stopCond = @(iter, f) min(f(:, 2))<10;
fops.addStopCondition({1, 1, 2}, {stopCond});

Listing 6.57 shows how to assign a stop condition to all tasks of chain in comparative study.
The stop condition is assigned to all tasks of all occurences of the first unique chain (chain1 -

MOZDT4 and chain1 - MOFON).

Listing 6.57: Add stop condition to all task of chain in comparative study in FOPS.

fops = FOPS(); % initialization of FOPS
fops.addCompStudy({'MOZDT4'; 'MOFON'}, {'NSGA-II', 'MOPSO'; 'GDE3', []}, 3);
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stopCond = @(iter, f) min(f(:, 2))<10;
isChain = true;
fops.addStopCondition({1, 1}, {stopCond}, isChain);

Figure 6.18 shows how to add a stop conditions to a task in FOPS GUI. It works identically
with tasks and chains.

As shown in Figures 5.1 or 6.7, stop conditions can be assigned to tasks or chains before adding
it to FOPS by Stop Conditions control buttons. These control buttons are not present in the
Comparative Study tab. It suggests, that the use of stop conditions in a comparative study is
rather senseless, although it is possible with a little difficulty.

6.4.2 getProblem

problemStruct = fops.getProblem(problemName)

Inputs:

problemName problem name and optional input argument, cell [1 x 1] or cell [1 x 2]

Outputs:

problemStruct optimization problem definition, struct [1 x 1]

This method returns the problem struct of a problem already defined in FOPS as a problem
function. Such method is helpful if the user wants to modify a problem already defined but without
changes of the problem m-file.

The Listing 6.58 shows how to obtain definition of MOFON benchmark problem and make the
first and third decision variable be discrete.

Listing 6.58: Define discrete variables to MOFON problem.

fops = FOPS();
MOFON = fops.getProblem('MOFON');
DV{1} = [-4, -3, -2, 2, 3, 4];
DV{3} = linspace(-3, 4, 101);
MOFON.discreteVars = DV;
fops.addTask(MOFON, 'MOPSO')
fops.runTask

The Listing 6.59 shows how to load the definition of MODTLZ2 problem with 15 decision variables
and 4 fitness functions.

Listing 6.59: Load customized MODTLZ2 problem.

fops = FOPS();
problemSettings = struct('nVars', 15, 'nObjs', 4);
MODTLZ2 = fops.getProblem({'MODTLZ2', problemSettings});
fops.addTask(MODTLZ2, 'GDE3')
fops.runTask

6.4.3 displayResults

fops.displayResults(id, type)

Inputs:

id cell array of strings or doubles, cell [1 x N]

type optional, simulation type, string or double, char [1 x N] or double [1 x 1]

This method launches the Results Figure of GUI of the FOPS simulation identified by id.
The variable id can be either the string name of the simulation or the sequence number of the
simulation - double. The type of the simulation is specified by type input argument. It can be
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either string (task, chain or CS) or double (1 - task, 2 - chain, 3 - comparative study). If type input
is omitted, the task type is assumed. Use Display results entry in Context Menu of selected
object in FOPS Tree in GUI to cast Results Figure or type in CTRL+D shortcut if main GUI
window is active.

The Listing 6.60 shows how to launch the Results Figure of the task myTask. The fourth and
fifth lines in listing have an identical effect.

Listing 6.60: Display results of task myTask.

fops = FOPS(); % initialization of FOPS
fops.activeHistory = true;
fops.addTask({'MOPOL'}, {'NSGA-II'}, [], 'myTask')
fops.runTask()
fops.displayResults('myTask', 1)
fops.displayResults(1)

The Listing 6.61 shows how to launch the Results Figure of chain myChain. The fourth and
fifth lines in listing have an identical effect.

Listing 6.61: Display results of chain myChain.

fops = FOPS(); % initialization of FOPS
fops.activeHistory = true;
fops.addChain({'MOPOL'}, {'NSGA-II', 'MOPSO'}, [], 'myChain')
fops.runChain()
fops.displayResults(1, 2)
fops.displayResults('myChain', 'chain')

The Listing 6.62 shows how to launch the Results Figure of the first comparative study (CS1)
in FOPS object.

Listing 6.62: Display results of comparative study.

fops = FOPS(); % initialization of FOPS
fops.activeHistory = true;
problems = {'MOPOL'; 'MOFON'};
algorithms = {'NSGA-II', 'GDE3'; 'MOPSO', 'NSGA-II'};
fops.addCompStudy(problems, algorithms, 3, {'GD', 'Time'})
fops.runCompStudy()
fops.displayResults(1, 3)

The Listing 6.63 shows how to launch the Results Figure of the task that is a part of the
comparative study. Note that the Listing 6.63 is a continuation of Listing 6.62. The first command
shows results of the first task of the second chain (the one with MOPOL problem) in the first com-
parative study. The second command shows results of the second task of the fourth chain (the one
with MOFON problem) in the first comparative study. Property nRuns of the comparative study was
set to 3. The selection between results of different runs of a simulation is performed by Choose

Run of Simulation popup menu in Results Figure (see in Chapter 9).

Listing 6.63: Display results of diffrent tasks in comparative study.

...
fops.displayResults({1, 2, 1}, 1) % chain2 - MOPOL, task1 - MOPSO
fops.displayResults({1, 4, 2}, 1) % chain2 - MOFON, task2 - NSGA-II

6.4.4 loadProblems

fops.loadProblems(folders)

Inputs:

folders cell array of strings, cell [1 x N]
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This method allows the user to add folders with problem functions. The method searches
through all the m-files in folders location and each function which begins with string function problem =

(whitespace insensitive) is marked as a problem function and is further accessible by FOPS methods
by the problem function name (case insensitive).

Use Load Problems entry of GUI’s MENU to load problem function in GUI of FOPS (see Fig-
ure 5.2).

6.4.5 open

fops.open(filename)

Inputs:

filename name of *.fops file with FOPS instance, may include path, char [1 x N]

This method allows user to open previously saved FOPS instance. This method can be per-
formed only with blank FOPS instance. Use Open FOPS entry of GUI’s MENU to open FOPS instance
in GUI of FOPS (see Figure 5.2).

The FOPS instance is saved by save method (see Subsection 6.4.9) or in MENU of FOPS GUI.
Save method can be also called when a run of simulation is terminated by Stop Simulation push
button in the Status Bar of GUI. In such case, an instance with unfinished simulation is stored in
*.fops file and if such FOPS instance is opened using open method, it is possible to resume it by
resume method or by clicking the Resume push button in the Status Bar of FOPS GUI.

6.4.6 quit

fops.quit() This method calls the destructor of FOPS object. Use Quit FOPS entry of GUI’s
MENU to quit FOPS instance in GUI of FOPS (see Figure 5.2).

6.4.7 reset

fops.reset()

This method serves to reset the FOPS object. It initializes the FOPS object anew. Use Reset

FOPS entry of GUI’s MENU to reset FOPS instance in GUI of FOPS (see Figure 5.2).

6.4.8 resume

fops.resume()

This method serves to resume the FOPS simulations. In GUI it is accessible via Resume push
button in Status Bar. Resume push button appears only if an unfinished simulation is present in
the FOPS instance. The FOPS simulation can be aborted by Stop Simulation push button in
Status Bar or by pressing CTRL+C (Note that such action terminates all MATLAB activities).

If the FOPS instance with aborted simulation is saved by the save method, resume of an
unfinished simulation is possible after opening the FOPS instance by the open method.

6.4.9 save

fops.save(filename)

Inputs:

filename name of file where the FOPS instance will be stored, may include path, char [1 x N]

This method allows user to store the elaborated FOPS instance. Such instance is stored in
*.fops file. Method save is accessible in bash mode or in MENU of FOPS GUI. Use Save FOPS

entry of GUI’s MENU to save FOPS instance in GUI of FOPS (see Figure 5.2).
Save method can be also called when a running simulation is terminated by the Stop Simulation

push button in Status Bar of GUI and user selects the save FOPS instance option. Such FOPS
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instance can be opened using the open method and the simulation can be resumed by the resume

method or by clicking on Resume push button in Status Bar of FOPS GUI.

6.4.10 startGUI

fops.startGUI(color)

Inputs:

color index of color template, double [1 x 1]

This method opens GUI of existing FOPS object.
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Simulation Settings

7.1 Task Settings

Task settings defines the behavior of an optimization algorithm during the optimization process.
This section contains list of all the task properties - abbreviation, whole name, default values in {
} brackets, and restrictions of values. More info about the task properties can be found in Chapter
14 or adjacent references.

Default algorithm properties can be viewed and/or redefined in setDefaultValues method of
FOPS class.

7.1.1 General Task Settings

nAgents

Double: {100}
Number of agents. Positive integer.

SOGA: nAgents >= TS (see Subsection 7.1.2).
NSGA-II: nAgents >= 2 (also uses tournament selection).
SODE: nAgents > 3 (trial vector is combination of three agents).
GDE3: nAgents > 3 (trial vector is combination of three agents).
VNDGDE3: nAgents > 3 (trial vector is combination of three agents).
SONEW: nAgents = 1 and it cannot be changed (Newton method is local method).

nIters

Double: {100}
Number of iterations. Positive integer.

7.1.2 SOGA Settings

PC

Double: {0.9}
Probability of crossover. PC ∈ 〈0, 1〉.

PM

Double: {0.7}
Probability of mutation. PM ∈ 〈0, 1〉.

TS

Double: {2}
Tournament size. Positive integer, TS <= nAgents.

BP

Double: {20}
Binary precision. Positive integer.
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BP can be stated as a scalar value (all decision variables will have equal BP) or as a vector of
integers, where the number of elements must correspond to the number of decision variables
of problem.

BP is automatically set according to number of possible states of decision variable when
discrete decision variable is used (see Chapter 11). User is informed by warning message
about the fact.

nCP

Double: {1}
Number of crossover positions. Positive integer. nCP <

∑
BP.

CP

Double: {0}
List of allowed crossover positions. Non-negative integers. Zero value denotes that all
crossover positions are allowed. CP <

∑
BP.

nMP

Double: {1}
Number of mutation positions. Positive integer. nMP <=

∑
BP.

MP

Double: {0}
List of allowed mutation positions. Non-negative integers. Zero value denotes that all muta-
tion positions are allowed. MP <=

∑
BP.

More info in Subsection 14.1.1.

7.1.3 SOPSO Settings

W

Double: {[0.6, 0.4]}
Inertia wieght. Non-negative values.

W usually linearly changes its value throughout the optimization run. First value defines
inertia weight in first iteration of algorithms, while the second value is an inertia weight in
the last iteration. A scalar input is also possible.

C1

Double: {1.5}
Cognitive learning factor. Altough it is not limited, C1 < 2 is recommended.

C2

Double: {1.5}
Social learning factor. Altough it is not limited, C1 < 2 is recommended.

BT

String: {'Reflecting'} | 'Absorbing' | 'Invisible'

Boundary type.

More info in Subsection 14.1.2.

7.1.4 SODE Settings

F

Double: {0.2}
Scaling factor. Although it is not limited, F ∈ 〈0, 3〉 is recommended.

PC

Double: {0.2}
Probability of crossover. PC ∈ 〈0, 1〉.

More info in Subsection 14.1.3.
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7.1.5 SOSOMA Settings

PR

Double: {0.1}
Probability of perturbation. PR ∈ 〈0, 1〉.

ST

Double: {4}
Number of steps. Non-negative integer.

PL

Double: {1.15}
Multiplicator of distance between steps.

BT

String: {'Reflecting'} | 'Absorbing' | 'Invisible'

Boundary type.

MT

String: {'AllToLeader'} | 'AllToAll'

Migration type.

More info in Subsection 14.1.4.

7.1.6 SONEME Settings

Alpha

Double: {1.2}
Reflection coefficient. Non-negative value.

Beta

Double: {0.5}
Contraction coefficient. Non-negative value.

Gama

Double: {0.5}
Expansion coefficient. Non-negative value.

BT

String: {'Reflecting'} | 'Absorbing' | 'Invisible'

Boundary type.

More info in Subsection 14.1.5.

7.1.7 SONEW Settings

As was mentioned in general settings (Subsection 7.1.1), number of agents nAgents is set to 1 and
cannot be changed.

Diff

Double: { 3
√

eps}
Difference used for numerical gradient and hessian calculation. The variable eps is a floating-
point relative accuracy. Non-negative value.

More info in Subsection 14.1.6.

7.1.8 SOCMAES Settings

Mu

Double: {0.5}
Fraction of agents used for update. Mu ∈ 〈0, 1〉.

More info in Subsection 14.1.7.
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7.1.9 NSGA-II Settings

PC

Double: {0.9}
Probability of crossover. PC ∈ 〈0, 1〉.

PM

Double: {0.7}
Probability of mutation. PM ∈ 〈0, 1〉.

TS

Double: {2}
Tournament size. Positive integer, TS <= nAgents.

BP

Double: {20}
Binary precision. Positive integer

BP can be stated as a scalar value (all decision variables will have equal BP) or as a vector of
integers, where the number of elements must correspond to the number of decision variables
of problem.

BP is automatically set according to number of possible states of decision variable when
discrete decision variable is used (see Chapter11). User is informed by warning message
about the fact.

nCP

Double: {1}
Number of crossover positions. Positive integer. nCP <

∑
BP.

CP

Double: {0}
List of allowed crossover positions. Non-negative integers. Zero value denotes that all
crossover positions are allowed. CP <

∑
BP.

nMP

Double: {1}
Number of mutation positions. Positive integer. nMP <=

∑
BP.

MP

Double: {0}
List of allowed mutation positions. Non-negative integers. Zero value denotes that all muta-
tion positions are allowed. MP <=

∑
BP.

More info in Subsection 14.2.1.

7.1.10 MOPSO Settings

W

Double: {[0.8, 0.5]}
Inertia wieght. Non-negative values.

W usually linearly changes its value throughout the optimization run. First value defines
inertia weight in first iteration of algorithms, while the second value is an inertia weight in
the last iteration. A scalar input is also possible.

C1

Double: {1.5}
Cognitive learning factor. Altough it is not limited, C1 < 2 is recommended.

C2

Double: {1.5}
Social learning factor. Altough it is not limited, C1 < 2 is recommended.
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BT

String: {'Reflecting'} | 'Absorbing' | 'Invisible'

Boundary type.

RGB

Double: {1}
Random global best. RGB ∈ 〈0, 1〉.

More info in Subsection 14.2.2.

7.1.11 GDE3 Settings

F

Double: {0.2}
Scaling factor. Although it is not limited, F ∈ 〈0, 3〉 is recommended.

PC

Double: {0.2}
Probability of crossover. PC ∈ 〈0, 1〉.

More info in Subsection 14.2.3.

7.1.12 VND-PSO Settings

W

Double: {[0.9, 0.4]}
Inertia wieght. Non-negative values.

W usually linearly changes its value throughout the optimization run. First value defines
inertia weight in first iteration of algorithms, while the second value is an inertia weight in
the last iteration. A scalar input is also possible.

C1

Double: {1.49}
Cognitive learning factor. Altough it is not limited, C1 < 2 is recommended.

C2

Double: {1.49}
Social learning factor. Altough it is not limited, C1 < 2 is recommended.

BT

String: {'Reflecting'} | 'Absorbing' | 'Invisible'

Boundary type.

PTF

Double:{[0.07, 0.13, 0.8]}
Probabilities to follow. PTFi ∈ 〈0, 1〉 for i = 1, 2, 3. Sum of all three values must be lower than
or equal to 1.

DCT

String: {'Best DC'} | 'Random DC' | 'No DC'

Dimension check type.

More info in Subsection 14.3.1.

7.1.13 VND-MOPSO Settings

W

Double: {[0.9, 0.4]}
Inertia wieght. Non-negative values.
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W usually linearly changes its value throughout the optimization run. First value defines
inertia weight in first iteration of algorithms, while the second value is an inertia weight in
the last iteration. A scalar input is also possible.

C1

Double: {1.49}
Cognitive learning factor. Altough it is not limited, C1 < 2 is recommended.

C2

Double: {1.49}
Social learning factor. Altough it is not limited, C1 < 2 is recommended.

BT

String: {'Reflecting'} | 'Absorbing' | 'Invisible'

Boundary type.

PTF

Double:{[0.02, 0.02, 0.96]}
Probabilities to follow. PTFi ∈ 〈0, 1〉 for i = 1, 2, 3. Sum of all three values must be lower than
or equal to 1.

DCT

String: {'Best DC'} | 'Random DC' | 'No DC'

Dimension check type.

More info in Subsection 14.3.2.

7.1.14 VND-GDE3 Settings

F

Double: {0.2}
Scaling factor. Although it is not limited, F ∈ 〈0, 3〉 is recommended.

PC

Double: {0.2}
Probability of crossover. PC ∈ 〈0, 1〉.

More info in Subsection 14.1.3.

PTF

Double:{[0.33, 0.33, 0.34]}
Probabilities to follow. PTFi ∈ 〈0, 1〉 for i = 1, 2, 3. Sum of all three values must be lower than
or equal to 1.

DCT

String: {'Best DC'} | 'Random DC' | 'No DC'

Dimension check type.

7.2 Chain Settings

Chain object contains multiple OptTask objects which optimizes the same problem. The prop-
erties that can be changed in chain are problem and algorithms.

Algorithms

Cell array of strings

Algorithms is a cell array with optimization algorithm names as shown in Subsection 6.2.5.

Problem

Cell array of strings

Problem is a cell array, where the first cell contains problem name or a problem struct as
shown in Subsection 6.2.5. Cell array can be of size [1 x 1] or [1 x 2]. Second column is reserved
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for input arguments of the problem function (see Chapter 4 or Listing 6.6). Note that the
change of the problem of a chain that is in comparative study is not allowed. Changes of
problems in a comparative study has to be made by the changeCompStudySettings method.

7.3 Comparative Study Settings

User can change problems, unique chains, requests and number of runs of comparative study.

Problems

Cell array of strings

Problems replaces all current problems in a comparative study with the problems specified
as a Problems input. Each unique chain in the comparative study will be repeated according
to the number of problems (see Listing 6.48 or Figure 6.12).

Problems is a cell array, where the first column of cell represents problem names or a problem
structs as shown in Subsection 6.3.5. Cell array can be of size [N x 1] or [N x 2]. Second column
can contain additional input arguments of problem function (see Listing 6.48 or Chapter 4 to
understand problem function input arguments).

Add problems

Cell array of strings

Add problems adds new problems alongside the current problems in a comparative study.
Each unique chain in the comparative study will be repeated according to number of problems
(see Listing 6.50).

Add problems is a cell array, where the first column of cell represents problem names or a
problem structs as shown in Subsection 6.3.5. Cell array can be of size [N x 1] or [N x 2].
Second column can contain additional input arguments of problem function (see Listing 6.48
or Chapter 4 to understand problem function input arguments).

Chains

Cell array of strings

Chains changes unique chains of a comparative study. The problems in the comparative
study remains the same.

Chains is a cell array with the names of optimization algorithms. Each line in cell defines
one chain with multiple tasks (see Listing 6.51).

Add chains

Cell array of strings

Add chains adds unique chains to a comparative study. The problems in the comparative
study remains the same. Properties of individual algorithms in all chains is set with defaults
values, even if some chains in comparative study are supposed to be unchanged.

Add chains is a cell array with the names of optimization algorithms. Each line in cell defines
one chain with multiple tasks (see Listing 6.51).

Metrics

Cell array of strings

Metrics replaces all current metrics in a comparative study with new ones. To learn more
about metrics see Chapter 8.

Metrics is a cell array with names of metrics introduced in Section ??. An example can be
seen in Listing 6.51.

Add metrics

Cell array of strings

Add metrics adds new metrics to a comparative study. To learn more about metrics see
Chapter 8.

Add metrics is a cell array with names of metrics introduced in Section ??.
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nRuns

Double

nRuns sets how many times all the individual simulations will be performed throughout the
whole comparative study. nRuns is a positive integer scalar value.
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Metrics

Metrics in FOPS provides sort of post-processing in comparative studies. When a comparative
study in FOPS is initialized, user can assign predefine metrics to be calculated. Each time some
chain in the comparative study is run, metric values present in metricTypes property of CompStudy
are calculated.

Metrics are used to qualify the results of an optimization run. There are several metrics im-
plemented in FOPS. Single-objective optimization has only one solution as a result, therefore it is
relatively easy to qualify it. Contrarily, multi-objective optimization results in a set of solutions
and it is difficult to say whether the found set is good or bad. This is the reason why most of the
metrics are related to the multi-objective optimization.

Metric objects has only one property:

type Identifies a type of metric, MetricType [1 x 1]

Calculated metric values are stored in results property of CompStudy object. Property
results contains fields named after the metric types of the size identical to the size od chains

property of CompStudy.

8.1 Generational Distance (GD)

This metric is related to multi-objective optimization. The generational distance finds average
Euclidean distance of member of set Q from P ∗ according to:

GD =

(∑|Q|
i=1 di

)
|Q|

, (8.1)

where the distance di is the Euclidean distance between solution i ∈ Q and the nearest member
of P ∗.

di = min
|P ∗|
k=1

√√√√ M∑
m=1

(
f

(i)
m − f∗(k)

m

)2
, (8.2)

where f
∗(k)
m is the m-th objective function value of the k-th member of P ∗ and f

(i)
m is the m-th

objective function value of the i-th member of Q.

It is obvious that the lower the value of GD is, the better the found set is. This metric requires
knowledge of true Pareto-front (Section 4.13 shows how to assign true Pareto-front of problem).
More information about the metric can be found in [2].

8.2 Spread (∆, D)

This metric is related to multi-objective optimization. Spread metric measures quality of distribu-
tion of non-dominated solutions, but it also takes in account the distance from true Pareto-front
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extremes. Therefore, it requires knowledge of true Pareto-front (Section 4.13 shows how to assign
true Pareto-front of problem). The metric is described by:

∆ =
de +

∑|Q|
i=1

∣∣di − d̄∣∣
de + |Q| · d̄

, (8.3)

where di is the average of two Euclidean distances from two neigboring solutions from non-
dominated set of i-th solution and d̄ is a mean value of di values. The parameter de is the sum of
Euklidean distances between adjacent extrems of sets Q and P ∗.

∆ can be zero only if extrems of found non-dominated set are identical to the extrems of true
Pareto-front and simultanously all distances between neighbouring solutions are equal to their mean
value (solutions are uniformly distributed). More information about the metric can be found in [2].

8.3 Hypervolume (HV)

This metric is related to multi-objective optimization. It calculates the volume in the objective
space covered by members of Q set. HV is a sum of volumes of hypercubes vi. Each hypercube
vi is constructed with a reference point W and the solution i ∈ Q as a diagonal corners of the
hypercube.

Reference point W has significant influence on the HV scale. Reference point for the hypervolume
calculation can be defined in a problem struct (see Section 4.15). If a reference point is too far
from found Pareto-front, the value of hypervolume will be large and changes of the Pareto-front
will have small impact on the HV value. Contrarily, it can happen that the whole non-dominated
set will be above reference point and the HV will be zero. If no reference point is stated, maximal
fitness values in each objective from set Q are taken as a hypervolume reference point.

It is obvious that the scale of HV metric depends on the problem (scale of fitness values and
reference point). The bigger the value of HV is, the better the non-dominated set was found. For
two-objective problems, HV is calculated simply by summing up the surfaces of rectangles (depicted
in [2]). For many-objective problems (three or more objectives), the calculation of HV becomes
complicated. The WFG technique is used in such cases [3], but it can be a time consuming
operation for large Q sets.

8.4 Error Ratio (ER)

This metric is related to multi-objective optimization. It simply counts the number of solutions
from found set (will be called Q in this section) which are not members of the true Pareto set (will
be called P ∗ throughout this section). This metric requires knowledge of true Pareto-front (Section
4.13 shows how to assign true Pareto-front of problem).

ER =

∑|Q|
i=1 ei
|Q|

, (8.4)

where ei = 1 if solution i /∈ P ∗ and ei = 0 otherwise. The value of ER should be as low as possible.
The ER = 0 means, that all members of set Q lies on true Pareto-front.

The drawback of this metric is, that set P ∗ has finite number of members and member of set Q
can be marked as error, although it is true optimal solution, but lies between the two solutions from
P ∗. To avoid such difficulty, a tolerance was introduced to ER metric in FOPS. The tolerance was
set to 1e−3, therefore if a member of Q is within tolerated distance from P ∗ it is still considered
true optimal.

Another drawback is that if no member of Q is in the Pareto-optimal set, user has no knowledge
about the closeness of the set Q from set P ∗. More information about the metric can be found
in [2].
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8.5 Spacing (S)

This metric is related to multi-objective optimization. It measures relative distance between con-
secutive solutions in the obtained non-dominated set according to:

S =

√√√√ 1

|Q|

|Q|∑
i=1

(
di − d̄

)2
, (8.5)

where di is the distance of i-th solution from the closest solutions of Q set as follows:

di = min

M∑
m=1

∣∣∣f im − fkm∣∣∣ , (8.6)

where k ∈ Q ∧ k 6= i. Variable d̄ from Equation 8.5 is a mean value of distances calculated by
Equation 8.6:

d̄ =

|Q|∑
i=1

di
|Q|

. (8.7)

The metric described by Equations 8.5, 8.6 and 8.7 measures the standard deviations of different di
values. If an algorithm finds solutions that are near uniformly spaced, the corresponding S value will
be small, therefore the smaller the spacing value is, the better the distribution of non-dominated
set was. The advantage of this metric is that it does not requires true Pareto-front of problem.
More information about the metric can be found in [2].

8.6 Maximum Spread (MD)

This metric is related to multi-objective optimization. It measures the length of diagonal of a hy-
perbox formed by extremes of non-dominated set according to:

MD =

√√√√ M∑
m=1

(
min

|Q|
i=1f

i
m −max

|Q|
i=1f

i
m

)2
. (8.8)

Basically, it is Euklidean distance of extreme solutions of non-dominated set. Disadvantage of such
metric is that for each problem it has different scale.

If true Pareto-front is stated in problem (see Section 4.13 how to define true Pareto-front of
problem), MD can be normalized with extrems of true Pareto-front. Metric will be then calculated
as follows:

MD =

√√√√ 1

M

M∑
m=1

(
min

|Q|
i=1f

i
m −max

|Q|
i=1f

i
m

Fmax
m − Fmin

m

)2

, (8.9)

where Fmax
m and Fmin

m are the maximum and minimum value, respectively, of m-th objective value
of extrems of true Pareto-front P ∗. In this case, MD = 1 if widely spread solutions are obtained.
More information about the metric can be found in [2].

8.7 Fitness Error (FER)

This metric is related to single-objective optimization. FER metric expresses the absolute difference
between true optimal fitness value (see Section 4.13 how to set optimal fitness value to problem)
and fitness value found by optimization process.

FER =
∣∣fP − fQ∣∣ , (8.10)

where fP is the fitness value of true optimum and fQ is the fitness value of found solution.
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8.8 Position Error (DER)

This metric is related to single-objective optimization. DER denotes decision space error and it is
an Euclidean distance between optimal position of problem (see Section 4.12 how to set optimal
position to problem) and position of found solution.

DER =

√√√√ N∑
i=1

(
xPi − x

Q
i

)2
, (8.11)

where N is the number of decision variables, xPi is the i-th decision variable of true optimal solution

and xQi is the i-th decision variable of found solution.

8.9 Computational Time (T)

Computational time is taken from Chain object after it is run. It is obtained by tic toc function
of MATLAB.

8.10 Number of Surrogate Solutions (nS)

This metric is related to surrogate optimization technique (see Chapter 10). It denotes how many
times was used the surrogate solution during a run of simulation. If the surrogate optimization is
disabled, the NaN value will be present in result property of nS Metric object.

8.11 Number of solutions (N)

This metric is related to multi-objective optimization. It shows how many solutions were present
in the non-dominated set.

8.12 Number of Decision Variables Deviation (NVD)

This metric is related to variable number of dimensions optimization. It shows the average difference
between the found dimensionality of a solution and the true optimal dimensionality of a solution.
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Chapter 9

Results in GUI

This chapter presents a tool for a simple vizualization of optimization results. The Results Figure

of FOPS GUI can be used to easily access results and vizualize data from simulations in FOPS.
Results of optimization are located in results property of OptTask, Chain or CompStudy
objects.

There are two modes of Results Figure - the mode where results of tasks or chains are visu-
alized and the mode where results of comparative study are visualized.

9.1 Results of Task or Chain

When a task or chain is run, its name in the FOPS Tree turns green and Display results entry
is allowed in the Context Menu (see Figure 9.1).

Figure 9.2 shows the layout of Results Figure of FOPS GUI. In the upper part of the figure
are the control elements that controls what should be plotted. The lower part of figure consists of
two tables - left table shows position of agents and right table shows corresponding fitness values.

The Results Figure contains following control elements:

Choose What To Plot allows user to choose whether he wants to visualize results of a simulation
(Results option), history of a simulation run (History option) or convergence plot of some
metric (Generational distance, Spread, Hypervolume or other options). Note that to vi-
sualize the history or metric convergence plots, the history of a simulation must be present in
the corresponding simulation object (enabled activeHistory before a simulation run).

Figure 9.1: Cast Results Figure in GUI.
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Figure 9.2: Results Figure of FOPS GUI.

Dimensions list box contains all dimensions of a problem, where the letter f i denotes i-th fitness
function and the letter x i denotes i-th decision variable. User can select any item from the
Dimensions list box and add it to the Selected Dimensions list box by the push button.
Dimensions can also be removed by the push button. Selected Dimensions list box can
contain no more than 3 items. It is possible to combine position and fitness values in a single
plot.

Style of Figure popup menu allows user to choose among different types of plot types in MAT-
LAB. The default one is the Scatter, which prints the solutions as points in axes. Another
one is Plot, which connects the solutions with lines and MST denoting the Minimum Span-
ning Tree. If three dimensions are present in the Selected Dimensions list box, Contour,
Contour3, Surf (interpolated), and Mesh entries are also available. These are advanced vol-
ume plot methods, which uses triangulation of solution to convert it into volume form (see
later in this chapter).

Choose Iterations To Plot edit box allows user to define iterations from which the data should
be plotted. The default value is 1:nIters. The value nIters cannot be exceeded (if chain’s
results are being visualized nIters is a sum of nIters properties of all tasks in chain). This
edit box is visible only if History item is selected in Choose What To Plot popup menu.

Choose Run of Simulation popup menu allows user to choose between results of task or chain
from different run. This popup menu is visible only if current task or chain is part of compar-
ative study with nRuns higher than 1.

Plot push button , plots optimization data into axes present in the right side of the
Figure 9.2.

Plot True Optimum push button allows user to plot true optima of a problem if the true
Optimum is known (see Sections 4.13 and 4.12 to learn how to define it). Otherwise, push

button is invisible.

Show Data From Iteration edit box and Show Data push button allows user to change content
of the two tables in the bottom of the Results Figure (see Figure 9.2). Both controls are
visible only if the history of a simulation exists. Input has to be scalar integer and maximal
value is nIters.
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9.1. RESULTS OF TASK OR CHAIN

Results Position, Results Fitness tables show the results of the simulation under inspection.
The ratio between the Results Position table area and the Fitness Position table area
can be changed by the thin push button between them.

Previous, Play/Pause, Next push buttons , , , and slider below them allow to browse
solutions from the individual iterations of a simulation run if history is present. Otherwise,
push buttons and slider are disabled.

ZoomIn, ZoomOut, Pan, Rotate3D, DataCursor push buttons , , , , has identical
functions as corresponding tools in the standard MATLAB figure.

NewFigure push button allows user to export current content of the axes to a new MATLAB
figure.

Note that the ratio between controls area and axes area can be changed by the thin push button
between the two areas.

Listing 9.1 show how to vizualize results of the single-objective task with SORAS problem. After the
Results Figure is shown, the Selected Dimensions list box contains only f 1 and item Results

in the Choose What To Plot popup menu is selected. Tables in the lower part of Results Figure

contain the best solution from each iteration of a simulation run. The found optimal solution is
the first entry (last iteration) in tables (note that the optimal solution in the results property of
the task is the last entry).

Tables contain entries from all iterations due to the possibility to plot convergence curve of
optimization run for a single-objective problems. Figure 9.3 shows a convergence curve of the
task from Listing 9.1. The figure is created when single-objective task is being vizualized and the
Selected Dimensions list box contains only one entry (f 1 in this case). Note that SORAS problem
was set to have 5 decision variables, otherwise the fitness values would drop near 0 in only a few
iterations.

Listing 9.1: Creation of task with SORAS problem.

fops = FOPS();
fops.activeHistory = true;
settings.nAgents = 200;
settings.nIters = 100;
fops.addTask({'SORAS', 5}, 'SODE', settings)
fops.runTask
fops.displayResults(1, 1)

Figure 9.3: Convergence of fitness values of
SORAS problem.

Figure 9.4: Dependence of fitness values on first
decision variable of SORAS problem.

66



CHAPTER 9. RESULTS IN GUI

Figure 9.4 shows the dependence of fitness values on the first decision variable for SORAS problem.
This time the problem had only two decision variables and algorithm had 1000 agents over 500
iterations. To generate such a figure, Results Figure is set as follows: the Selected Dimensions

list box contain dimensions x 1 and f 1 below and the Choose What To Plot popup menu is set
to History.

Figure 9.5 shows different plot types chosen in the Style of Figure popup menu. All figures
show the dependence of fitness values on both decision variables of SORAS problem (the Selected

Dimensions list box contains x 1, x 2 and f 1 and Choose What To Plot popup menu contains
History).

Figure 9.5a shows the Contour style, which is 2D plot where the third dimension is substituted
by the color of the curves (the color bar is shown). Note that only 10 curves are shown in each
dimension and also the overall number of unique solutions to plot is limited to 10000 due the
plotting complexity of Contour plot.

Figure 9.5b shows the Contour3 style, which is 3D plot and the third dimension is also distin-
guished by the color of the curves (the color bar is shown). Note that only 10 curves are shown in

(a) Contour plot. (b) Contour3 plot.

(c) Surf plot. (d) Mesh plot.

Figure 9.5: Dependence of fitness values on both decision variables of SORAS problem.

67



9.2. RESULTS OF COMPARATIVE STUDY

each dimension and also the overall number of unique solutions to plot is limited to 10000 due the
plotting complexity of Contour3 plot.

Figure 9.5c shows Surf style, which is 3D shaded surface plot. Note that the overall number of
unique solutions to plot is limited to 100000 due the plotting complexity of Surf plot.

Figure 9.5d shows Mesh style, which is 3D mesh plot. Note that the overall number of unique
solutions to plot is limited to 100000 due the plotting complexity of Mesh plot.

In Listing 9.2, comparative study with only one chain, one problem and 3 runs is created.
History is enabled. Afterwards, it is run and a GUI is launched.

Listing 9.2: Creation of comparative study which results will be shown in GUI.

fops = FOPS();
fops.activeHistory = true;
set.nIters = 50;
requests = [];
settings = {[], set};

Figure 9.6 shows an animation of the results of the first run of the comparative study defined
in Listing 9.2. At first, the true Pareto-front and the result Pareto-front are displayed while the
Choose What To Plot is set to Results. Afterwards, the Choose What To Plot popup menu is
changed to History and push button is pushed. The results from every second iterations are
being plotted until nIters is reached.

9.2 Results of Comparative Study

It was mentioned in Chapter 8 that Results figure can display metric results of comparative
study. Listing 9.3 shows creation of a comparative study with several two metrics and GUI is
launched after running the comparative study.

Figure 9.6: Results figure of FOPS on the left side and an animation of the fitness values of the
MOZDT1 problem on the right.
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Listing 9.3: Creation of comparative study with requests.

fops = FOPS();
fops.showProgress = true;
problems = {'MOZDT1'; 'MOFON'};
chains = {'NSGAII', 'MOPSO', 'GDE3'; 'MOPSO', 'GDE3', []; 'MOPSO', [], []};
requests = {'GD', 'time'};
fops.addCompStudy(problems, chains, 10, requests)
fops.runCompStudy

Figure 9.7 shows Results Figure of comparative study. In the top left corner of Results

Figure is Choose What To Show popup menu, which allows user to select metric to be shown in
Metrics table in the lower part of the Results Figure. Note that if values of selected metric was
not calculated during the comparative study run (metrics input argument of CompStudy), they
are calculated right away.

The Metrics table in the lower part of Figure 9.7 contains values from result properties of
CompStudy object. Comparative study created in Listing 9.3 has property nRuns equal to 10, 3
unique chains and 2 problems. Therefore, the Metrics table has 6 columns (excluding the label
column) and first 4 rows belong to statistical data - Mean denotes the mean value over all runs of a
particular chain, Std dev denotes Standard deviation and Minimum and Maximum are minimal and
maximal values over all runs, respectivelly. Under statistical data are 10 rows belonging to the ten
repetitions of chains in the comparative study.

For better orientation in Metrics table, Properties table with chain’s properties is shown in
the upper part of Results Figure. Its content is based on selected cell in Metrics table. Column
names of Metrics table suggests names of unique chains and an optimization problem.

The upper part of the Results Figure also shows controls for dimension selection identical
to the controls from previous section. When the Results item is selected in the Choose What to

Show, push buttons for adding and removing dimensions are enabled and the user can plot result
Pareto-fronts of selected chains in Metrics table by clicking on push button. New MATLAB
figure is opened. Afterwards, clicking on any chain in Metrics table highlights its results.

Metric convergence plots can also be plotted from Results Figure. In this case, history of all
chains must be present, because the selected metric values are calculated for every iteration of each
chain. Note that such an operation can be time demanding. Plotting is executed also by push

Figure 9.7: Results of comparative study in Results Figure of FOPS GUI.
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button and a new MATLAB figure is opened. Again, by clicking on any chain in Metrics table
highlights the corresponding convergence plot.
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Chapter 10

Tolerance-based Surrogate Method

Evolutionary algorithms usually exploits numerous agents (nAgents) over many iterations (nIters),
which results in great number of fitness function evaluations. In real world, there are some optimiza-
tion problems, where fitness function evaluation can be time consuming, therefore it is advantageous
to keep the number of fitness function computations at minimum. However, evolutionary algorithm
needs many agents and iterations to be able to find optimal solution.

Tolerance-based Surrogate Method allows optimization algorithm to skip some fitness function
evaluations, if the position of agent is similar to some previously obtained solution. This can be
helpful, particularly in real world problems, because some decision variables do not need to be overly
precise (manufacturing limits and the like) and if some previously evaluated solution is similar to
the newly generated one (they are close to each other in decision space), the fitness value of known
solution is assigned to the new solution (solution is substituted). This is allowable, because an
agent with similar position would most likely have also similar fitness values, therefore an error
caused by such assumption is relatively small. Such methods are generally known as Surrogate
optimization methods.

At the beginning of an algorithm run, no fitness values are known and all fitness function evalu-
ations has to be performed and positions are stored in problem’s surrogate field with corresponding
fitness values (archive of known solutions). At some point in the optimization process the algorithm
converges close to true Pareto-front and the generated positions (decision variables for which the
fitness values have to be computed) begins to be similar (or equal) to members of the archive.
Evaluation of fitness functions of such solutions has negligible contribution to the optimization
process, therefore it is not performed and the fitness values of the closest solution are taken from
the archive.

10.1 Tolerance Vector

How close has to be the generated position to a member of an archive is defines by the vector of
tolerances, which has the number of elements equal to the number of decision variables (nVars).
Each time a difference between position of a member of an archive and generated position is lower
than the tolerance vector, the fitness functions evaluation is skipped.

Fig. 10.1 further clarifies the Tolerance-based Surrogate Method. It is the decision space of a
MO2D problem (see Subsection 15.1.1). A light gray grid denotes the limits of decision variables, i.e.
x1 ∈ 〈0.1, 1〉 and x2 ∈ 〈0, 1〉. Fitness functions are defined as follows:

f1 (x) = x1, (10.1)

f1 (x) =
1 + x2

x1
. (10.2)

A red line marks the true Pareto-front of a problem in decision space. There are 15 solutions
stored in the surrogate archive (their positions are marked with black thick crosses). Tolerance
vector was set to [0.05, 0.1] and areas within tolerance are marked by hatched boxes around so-
lutions. Five of the solutions are marked with the index number from 1 to 5. The solution 1
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Figure 10.1: Decision space of MO2D problem with solutions stored in the interpolation archive.

is a true Pareto-optimal solution and its fitness values are [0.1, 10]. The solution 2 has fitness
values [0.3, 3.67]. The solution 3 is not far from optimality (see that tolerance box covers true
Pareto-front) and its fitness values are [0.5, 3.5]. The solution 4 has fitness values [0.7, 1.643] and
the solution 5 has fitness values [1, 1]. All indexed solutions are non-dominated.

If newly generated solution has a position e.g. [0.94, 0] (marked with blue thin cross), it will fall
in a tolerance area of solution 5 ([1, 0]) and even if its fitness values according to (10.1) and (10.2)
would be [0.94, 1.064], the fitness values [1, 1] of the solution 5 will be assigned to it. A deviation
in fitness values caused by Tolerance-based Surrogate Method is relatively small in this case.

Another generated solution has a position e.g. [0.14, 0] (marked with blue thin cross). Such
solution will fall in a tolerance area of solution 1 ([0.1, 0]) and even if its fitness values according
to (10.1) and (10.2) would be [0.1, 7.143], the fitness values [0.1, 10] of solution 1 will be assigned
to it. The difference between true fitness values and the surrogate fitness values is rather large
here, although the absolute distance between archive member and generated solution is identical
as in the previous case with the solution 5. This suggests that a setting of tolerance vector can be
sometimes a difficult task.

The solution 3 in Fig. 10.1 indicates the drawback of Tolerance-based Surrogate Method.
Border of hatched box of this solution lies on true Pareto-front, but the solution itself is rather
far away ([0.5, 0.075]). Therefore, if new solution is generated within the hatched box eg. [0.5, 0]
(marked with blue thin cross) then fitness values of known solution are assigned to it. But the
fitness values of solution with position [0.5, 0] according to (10.1) and (10.2) are [0.5, 2], while the
fitness values of solution 3 from surrogate archive are [0.5, 3.5]. Afterwards the solution [0.5, 0]
(which is, as we know, better then surrogate archive member) will be supressed in an optimization
process due to its worsened fitness values.

This drawback can be supressed with the use of a discrete decision space (see Chapter 11). Then,
the tolerance vector can be set to almost zero values and the new solution can be either identical
or differ by the step of discrete decision variable. If new solution generated by the optimization
algorithm already exists in the surrogate archive, it is not calculated again.
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Chapter 11

Discrete Variables

The definition of discrete decision variables in a problem struct was introduced in Section 4.6. The
discrete decision variables are often required in real world optimization problems. For example,
resistors made in sets E12 or E24 or diameter of some mechanical component can be made with
limited precision. All the algorithms in FOPS supports discrete decision space although most
algorithms (except the GA algorithms), are originally real-coded.

User inserts all samples of the decision variable to the property discreteVariables of a
problem. Therefore, if user wants the decision variable take integer values between 0 and 10,
the corresponding field of discreteVariables will contain the vector [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10].
An algorithm (except GAs) during its run generates real values, but they are afterwards adjusted
to the closest member of the discreteVariables property (note that closeness is relative - it is
ensured, that each member of discreteVariables property will be selected with the same prob-
ability). The adjusted values are inserted to a position properties of Agents and the fitness
values are calculated from modified positions. The discretization of decision variables is more or
less enforced to real-coded algorithms.

Discretization principle of GAs (SOGA and NSGA-II, Subsections 14.1.1 and 14.2.1) is com-
pletely inverse. If real-coded decision space is used, the binary sequence is generated as a position
and it is afterwards mapped to the limits of a problem (see Section 4.1), but the decision space
remains still discrete (density of discrete points depends on binary precision (BP) of a given decision
variable).

If the discreteVariables property is defined in a problem optimized by the genetic algorithm,
the binary precision BP of genetic algorithm is adjusted according to the number of elements of
corresponding cell in discreteVariables property. If the default value of BP is 20 for each decision
variable and the first cell of discreteVariables has 100 elements (100 discrete points of first
decision variable), the binary precision of first discrete variable will be adjusted to 7 (27 = 128,
128 > 100). The decision space will be shrinked, therefore it iwill be easier for the algorithm to
find the optimal solutions.
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Constraints Handling

It was mentioned in Chapter 2, that some optimization problems are constrained, i.e. some prop-
erties of optimized system has additional restrictions. Solution that violates constraint function
is called infeasible solution. Infeasible solution can be seen as an optimal one from the fitness
values point of view, but an optimization algorithm should neglect such solutions during its run
and present only feasible solutions as a result.

There are two ways of constraints handling in FOPS. The first one is specific to NSGA-II
algorithm, while other algorithms uses the second approach.

1. Algorithm NSGA-II sorts the combined population (parent and offspring population) accord-
ing to non-dominated levels in its each iteration(see Subsection 14.2.1). If the population
is sorted into e.g. 10 non-dominated levels, then each solution has its rank from 1 to 10.
An unfeasible solution has to be penalized in order to neglect such solution for following iter-
ations. In NSGA-II algorithm, all unfeasible solutions are penalized by adding penalization

to its rank, where the penalization is equal to the number of non-dominated levels in com-
bined population. This suggests, that only if there are more than nAgents unfeasible solutions
in combined population (it has 2·nAgents members), the unfeasible solution can be selected
for next iterations.

2. Constraints in other algorithms are handled similarly. Since no ranks are used in other
algorithms, fitness values of unfeasible solutions are altered. If a solution is unfeasible, the
worst fitness values throughout the whole population are assigned to it. This ensures that
even one feasible solution will dominate the unfeasible solutions. Therefore, the unfeasible
solutions will not be further exploited.

74



Chapter 13

Input String Lexicon

When strings are inserted by user into FOPS, there are various alternatives that will be trans-
lated into the correct string. Therefore, user does not have to remember the exact form of input
arguments. In this chapter will be discused possible string combinations for each input type.

Strings in this chapter are adjusted for good readability i.e. they contain whitespaces and/or
capital letters, but the string translator in FOPS is case insensitive and removes all whitespaces
and non-word characters from input strings. For example: user inserts 'NUmber of-Iterations?',
which will be transformed into 'numberofiterations' and the string 'numberofiterations' is
recognized as nIters property.

13.1 Problem Properties

limits

'limits' 'limit' 'lims' 'lim'

Limits of decision variables (see Section 4.1).

fitness

'fitness' 'fitnes' 'fintes' 'fintess' 'fit' 'f'

Fitness functions of problem (see Section 4.2).

name

'name' 'problem name'

Name of problem (see Section 4.3).

constraints

'constraints' 'constraint' 'constrains' 'constrain' 'cons'

Consitraint functions of problem (see Section 4.4).

isVectorized

'is vectorized' 'vectorized' 'isvector' 'vector' 'is vec'

Fitness and constraint functions of problem are vectorized (see Section 4.5).

discreteVariables

'discrete variables' 'discrete variable' 'discrete var' 'discrete vars' 'discrete'

'disc var' 'disc vars' 'DV'

Discrete decision variables of problem (see Chapter 11 or Section 4.6).

surrogate

'surrogate' 'surrogate method' 'surogate' 'surogate method' 'surro' 'suro'

Surrogate method (see Chapter 10 or Section 4.7).

initialPosition

'initial position' 'initial pos' 'initial X' 'init position' 'init pos'

'init X' 'start position' 'start pos' 'start X'

Initial position of local optimization (see Section 4.8).
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gradient

'gradient' 'grad'

Gradient of fitness functions (see Section 4.9).

hessian

'hessian' 'hesian'

Hessian of fitness functions (see Section 4.10).

nVarsList

'nVars list' 'nVar list' 'nVar lst' 'nVars lst' 'Number of variables list'

'dimension list' 'dim list' 'nVars' 'nVar'

Range of dimension (number of decision variables) of agent (see Section 4.11).

optimalPosition

'optimal position' 'opt X' 'optimal X' 'optimal pos' 'opt pos' 'opt position'

Optimal positions of problem (see Section 4.12).

optimalFitness

'optimal fitness' 'opt F' 'optfitness' 'optimum' 'pareto front'

'true pareto front'

Optimal fitness values of problem (see Section 4.13).

optimalDimension

'optimal dimension' 'optimal D' 'opt D' 'opt dim' 'opt dimension'

'optimal dim'

Optimal dimension values of problem (see Section 4.14).

reference

'reference' 'reference point' 'hypervolume reference'

'hypervolume reference point' 'HV reference point' 'ref point' 'HV ref point'

'HV ref' 'HV reference' 'hypervolume ref'

Reference point for hypervolume metric (see Section 8.3 and Section 4.15).

fullControl

'full control' 'ful control'

Full control over OptTask object during fitness function evaluation (see Section 4.16).

systemResponse

'system response' 'response' 'sys res' 'system res' 'sys response'

System response function handle (see Section 4.17).

13.2 General Task Properties

nAgents

'N agents' 'number of agents' 'number of agent' 'N agent'

Number of agents (see Subsection 7.1.1).

nIters

'N iters' 'N iter' 'N iterations' 'N iteration' 'number of iterations'

'number of iteration' 'number of iters' 'number of iter'

Number of iterations (see Subsection 7.1.1).
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13.3 Genetic Algorithm Properties

The following properties are related to algoritms SOGA and NSGA-II (see Subsections 7.1.2 and
7.1.9).

PC

'PC' 'crossover probability' 'crossover prob' 'probability of crossover'

Probability of crossover.

PM

'PM' 'mutation probability' 'mutation prob' 'probability of mutation'

Probability of mutation.

TS

'TS' 'tournament size' 'tour size'

Tournament size (property of SOGA algorithm).

BP

'BP' 'binary precision' 'bin prec' 'binary prec' 'bin precision'

Probability of crossover.

nCP

'nCP' 'number of crossover positions' 'N cross positions'

'number of cross positions' 'N cross position' 'number of cross pos'

'N cross pos'

Number of crossover positions.

CP

'CP' 'crossover positions' 'crossover pos'

'cross pos' 'C pos' 'crossing pos'

Crossover positions.

nMP

'nMP' 'number of mutation positions' 'N mut positions'

'N mut position'

'number of mut positions' 'N mut position' 'number of mut pos'

'N mutation positions'

'N mutation position'

Number of mutation positions.

MP

'MP' 'mutation positions' 'mutation points' 'mutation pos'

'mut pos' 'mut P'

Mutation positions.

13.4 Particle Swarm Optimization Properties

The following properties are related to algoritms SOPSO, MOPSO and VND-PSO (see Subsections
7.1.3, 7.1.10 and 7.1.12).

W

'W' 'inertia weight' 'inertia weigth' 'weight' 'weigth'

Inertia weight.

C1

'C1' 'cognitive learning factor'

Cognitive learning factor.
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C2

'C2' 'social learning factor'

Social learning factor.

BT

'BT' 'boundary type' 'boundary' 'bound' 'bound type'

Boundary type.

RGB

'RGB' 'random GBest' 'rand GBest' 'G best random' 'G best rand'

'global best rand' 'global best random' 'random global best'

'random global bests' 'rand global best'

Random global best (property of MOPSO algorithm).

DCT

'DCT' 'DC type' 'dim C type' 'dim check type' 'dim check' 'dimension check'

'dimension check type'

Dimension check type (property of VND-PSO and VND-MOPSO algorithms).

PTF

'PTF' 'probabilities to follow' 'prob to follow' 'probabilities'

Probabilities to follow (property of VND-PSO and VND-MOPSO algorithms).

13.5 Differential Evolution Properties

The following properties are related to algoritms SODE and GDE3 (see Subsections 7.1.4 and
7.1.11).

PC

'PC' 'crossover probability' 'crossover prob' 'probability of crossover'

Probability of crossover.

F

'F' 'scaling factor' 'scale factor' 'scaling' 'scale'

Scaling factor.

DCT

'DCT' 'DC type' 'dim C type' 'dim check type' 'dim check' 'dimension check'

'dimension check type'

Dimension check type (property of VND-GDE3 algorithm).

PTF

'PTF' 'probabilities to follow' 'prob to follow' 'probabilities'

Probabilities to follow (property of VND-GDE3 algorithm).

13.6 Self-organizing Migrating Algorithm Properties

The following properties are related to algoritm SOSOMA (see Subsection 7.1.5).

PL

'PL' 'multiplier' 'step multiplier'

Multiplicator of distance between steps.

ST

'ST' 'steps' 'stepsize' 'number of steps' 'N steps'

Number of steps.

PR

'PR' 'probability' 'perturbance' 'perturb' 'probability of perturbance'
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'perturbance probability' 'perturbance prob' 'prob of perturbance'

Probability of perturbance.

BT

'BT' 'boundary type' 'boundary' 'bound' 'bound type'

Boundary type.

MT

'MT' 'migration type' 'migration' 'migrate' 'migrate type' 'mig type'

Migration type.

13.7 Nelder-Mead Properties

The following properties are related to algoritm SONEME (see Subsection 7.1.6).

aplha

'aplha' 'A' 'reflection coefficient' 'reflection' 'reflect' 'reflection coef'

'reflect coef'

Reflection coefficient.

beta

'beta' 'B' 'contraction coefficient' 'contraction' 'contract'

'contraction coef' 'contract coef'

Reflection coefficient.

gama

'gama' 'C' 'gamma' 'expansion' 'expansion coefficient' 'expand'

'expansion coef' 'expand coef'

Expansion coefficient.

BT

'BT' 'boundary type' 'boundary' 'bound' 'bound type'

Boundary type.

13.8 Newton Algorithm Properties

The following properties are related to SONEW(see Subsection 7.1.7).

diff

'diff' 'difference' 'diference'

Difference.

13.9 Covariance Matrix Adaptation Evolutionary Strategies Prop-
erties

The following properties are related to SOCMAES(see Subsection 7.1.8).

mu

'mu' 'mu portion' 'effective N' 'N eff' 'effective nAgents'

Effective number of agents.

13.10 Chain Properties

The following properties are related to chain (see Section 7.2).
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algorithms

'algorithms' 'algorithm' 'tasks' 'task' 'method' 'methods' 'algh' 'alghs'

Change algorithms in chain.

problem

'problem' 'problems' 'prob' 'probs'

Change problem of chain.

13.11 Comparative Study Properties

The following properties are related to comparative study (see Section 7.3).

nRuns

'N runs' 'N run' 'num of runs' 'num of run' 'number of runs' 'number of run'

'repeats' 'repetitons' 'repetitons'

Change number of runs of comparative study.

chains

'chains' 'chain' 'algorithms' 'algorithm'

Change chains in comparative study.

addChains

'add chains' 'add chain' 'add algorithms' 'add algorithm' 'ad chains'

'ad chain'

Add chains to comparative study.

problems

'problems' 'problem' 'probs' 'prob'

Change problems in comparative study.

addProblems

'add problems' 'add problem' 'add probs' 'add prob' 'ad problems' 'ad problem'

Add problems to comparative study.

requests

'requests' 'request' 'reqs' 'req'

Change requests in comparative study.

addRequests

'add requests' 'add request' 'add reqs' 'add req' 'ad requests' 'ad request'

Add requests to comparative study.
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13.12 Algorithm Types

SOGA

'SOGA' 'SOGA Task'

Algorithm SOGA (see Subsection 14.1.1).

SOPSO

'SOPSO' 'SOPSO Task'

Algorithm SOPSO (see Subsection 14.1.2).

SODE

'SODE' 'SODE Task'

Algorithm SODE (see Subsection 14.1.3).

SOSOMA

'SOSOMA' 'SOSOMA Task'

Algorithm SOSOMA (see Subsection 14.1.4).

SONEME

'SONEME' 'SONEMET' 'NEME' 'Nelder Mead' 'SONEME Task'

Algorithm SONEME (see Subsection 14.1.5).

SONEW

'Newton' 'SO Newton' 'New' 'SO New' 'Newton Task'

Newton algorithm (see Subsection 14.1.6).

SOCMAES

'SOCMAES' 'CMAES' 'ES' 'CMAES task' 'SOCMAES Task'

Algorithm SOCMAES (see Subsection 14.1.7).

NSGAII

'NSGA II' 'NSGA 2' 'MO NSGA II' 'MO NSGA 2' 'NSGA II Task' 'NSGA 2 Task'

Algorithm NSGA-II (see Subsection 14.2.1).

MOPSO

'MOPSO' 'MOPSO Task'

Algorithm MOPSO (see Subsection 14.2.2).

GDE3

'GDE 3' 'GDE' 'GDE III' 'MO GDE' 'MO GDE 3' 'MO GDE III' 'GDE 3 Task'

'GDE Task' 'GDE III Task'

Algorithm GDE3 (see Subsection 14.2.3).

VNDPSO

'VND PSO' 'SO VND PSO' 'VND SOPSO' 'PSO VND' 'SOPSO VND' 'VND PSO Task'

Algorithm VND-PSO (see Subsection 14.3.1).

VNDMOPSO

'VND MOPSO' 'VND PSO MO' 'MOVND PSO' 'PSO VND MO' 'PSO MO VND' 'MOPSO VND'

'VND MOPSO Task' 'VDN MOPSO'

Algorithm VND-MOPSO (see Subsection 14.3.2).

VNDGDE3

'VND GDE3' 'VND GDE3 Task' 'GDE3 VND' 'VND GDE' 'GDE VND' 'VND GDE III' 'GDE

III VND' 'VDN GDE3'

Algorithm VND-GDE3 (see Subsection 14.3.3).

13.13 Metric Types

GenerationalDistance

'Generational Distance' 'GD' 'Generational Distance GD'
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'Generation Distance' 'Gen Dist'

Generational distance metric (see Subsection 8.1).

Spread

'Spread' 'Delta' 'Spread Delta'

Spread metric (see Subsection 8.2).

Hypervolume

'Hypervolume' 'HV' 'Hypervolume HV'

Hypervolume metric (see Subsection 8.3).

ErrorRatio

'Error Ratio' 'ER' 'Error Ratio ER'

Error ratio metric (see Subsection 8.4).

Spacing

'Spacing' 'S' 'Spacing S'

Spacing metric (see Subsection 8.5).

MaximumSpread

'Maximum Spread' 'D' 'Maximum Spread D'

Maximum spread metric (see Subsection 8.6).

FitnessError

'Fitness Error' 'FE' 'FER' 'F error' 'Fit E' 'Fit Error' 'Fitness E'

'Fitness Error' 'Fitness Error FER'

Fitness error metric (see Subsection 8.7).

PositionError

'Position Error' 'DE' 'DER' 'PE' 'PER' 'D error' 'P error' 'Pos E'

'Pos Error' 'Pos Er' 'XE' 'XER' 'X Error' 'Position E' 'Position Error DER'

Position Error metric (see Subsection 8.8).

ComputationalTime

'Computational Time' 'T' 'Time' 'CPU Time' 'Compute Time' 'Comp Time'

'Computational Time T'

Computational time metric (see Subsection 8.9).

nS

'nS' 'Number of surrogate solutions' 'N surrogate' 'N surrogates' 'num surrogate'

'num surrogates' 'N times used surrogate' 'N used surrogate'

'Number of surrogate solutions'

Number of surrogate solutions metric (see Subsection 8.10).

N

'N' 'Number of solutions' 'N solutions' 'N sol' 'N sols'

Number of solutions metric (see Subsection 8.11).

NVD

'NVD' 'Number of variables deviation' 'N Vars' 'N Variables' 'N Variable' 'N

dim' 'N dims' 'N dims deviation'

'N dims dev'

'deviation'

'N dev'

'Number of variables'

'N var dev'

'N vars dev'

Number of variables deviation metric (see Subsection 8.12).
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13.14 Dimension Check Types

Dimension check type is related to VND algorithms (see Subsections 14.3.1, 14.3.2, and 14.3.3)

Best

'Best' 'Best DC'

Best dimension check type.

Random

'Random' 'RND' 'Rand' 'Random DC' 'Rand DC' 'Ran DC'

Random dimension check type.

No

'No' 'NA' 'None' 'No DC' 'None DC'

No dimension check.

13.15 Boundary Types

Boundary type is related to PSO, Nelder-Mead and SOMA algorithms (see Subsections 14.1.2,
14.2.2, 14.3.1, 14.3.2, 14.1.5 and 14.1.4)

Reflecting

'Reflecting' 'Ref' 'Reflect'

Reflecting boundary type.

Absorbing

'Absorbing' 'Abs' 'Absorb'

Absorbing boundary type.

Invisible

'Invisible' 'Inv'

Invisible boundary type.

13.16 Migration Types

Migration type is related to SOMA algorithm (see Subsection 14.1.4)

AllToLeader

'All To Leader' 'All To One' 'All Leader' 'All One'

All to leader migration type.

AllToAll

'All To All' 'All All'

All to all migration type.
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Algorithms

As was mentioned in Chapter 2, optimization methods can be divided into single-objective and
multi-objective according to the number of fitness functions that describes the optimized sys-
tem. Methods can also be either local or global. Local method is able to find only local optimal
solution, while the global method should be able to find global optimal solution. Newton (see
Subsection 14.1.6) and Nelder-Mead (see Subsection 14.1.5) methods are the only local methods
implemented in FOPS.

FOPS also contains special single-objective method for solving problems with Variable Number
of Dimension – VND-PSO (see Subsection 14.3.1).

14.1 Single-objective Algorithms

14.1.1 SOGA

As the name suggests, principle of genetic algorithm is based on natural genetics and natural
selection. There exist numerous textbooks on GAs such as [4], [5], [6] or [2]. GA works with two
populations (set of agents) – parent and offspring. Offspring population is derived from parent
population in each iteration of genetic algorithm.

Formation of offspring population consists of selection, crossover and mutation. During selection
operation, potentially strong individuals (agents) are selected among parent population and weak
individuals are neglected. The objective of selection is to make duplicates of good solutions at
the expense of bad solutions. Crossover is a pair-wise crossing of randomly selected individuals.
Afterwards, mutation of offspring population is performed to ensure diversity in the population.

Tournament selection is used in FOPS. In tournament selection, tournaments are played between
TS (Tournament Size, see Subsection 7.1.2) randomly selected solutions and the best solution
according to fitness values is chosen to be further exploited. nAgents tournaments are played
during each selection process. Therefore, parameter TS defines the depth of selection. If TS is set to
one, solutions are picked completely at random. If TS is set to nAgents (maximal possible value),
repetitions of the best solution in population forms the output of selection. The default value of
TS in FOPS is 2.

GA is a binary coded algorithm. It means that the agents position is described by sequence of
binary digits. However, GAs are not restricted to use only integer values. The number of binary
digits depends on BP (binary precision, see Subsection 7.1.2) parameter. BP can differ for each
decision variable. Default value of BP in FOPS is 20 for each decision variable. Therefore, an agent
with 3 decision variables and default BP value will be described by a sequence of 60 zeros and ones
(note that the use of discrete variables (see Chapter 11) changes BP property).

In crossover, two solutions are picked at random from population and parts of binary coded
positions are exchanged between the two picked solutions with probability of PC (Probability of
Crossover, see Subsection 7.1.2). If PC is set to 1, this operation creates nAgents new solutions. If
PC is set to 0, no crossover operation will be performed. Default value of PC in FOPS is 0.9. nCP

(number of Crossover Positions, see Subsection 7.1.2) parameter defines number of places, where
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(125, 244)
(145, 91)

011 11101  1 1110 100
100 10001  0 1011 011

011 10001  0 1110 011
100 11101  1 1011 100

(113, 115)
(157, 220)

Figure 14.1: Crossover operation with nCP = 3.

(125, 244)
(145, 91)

01111101  11110100
10010001  01011011

(117, 244)
(145, 123)

01110101  11110100
10010001  01111011

Figure 14.2: Mutation operation of two agents.

the binary positions will be crossed. Crossover positions are generated randomly. Default value
of nCP in FOPS is 1. Maximal value of nCP is

∑
BP − 1. Such value results in swap of each even

binary place.

Figure 14.1 depicts the crossover of two agents with two decision variables (BP = 8 for both
decision variables). Brackets contain decimal values of binary coded positions.

Mutation operation changes randomly picked place in binary position with the probability of PM
(Probability of Mutation, see Subsection 7.1.2). If PM is set to 1, each agents position is mutated.
If PM is set to 0, no mutation operation will be performed. The default value of PM in FOPS is 0.7.
Figure 14.2 depicts the mutation of two randomly picked agents. Positiion of mutated binary place
is randomly picked.

14.1.2 SOPSO

Particle Swarm Optimization is evolutionary algorithm, which simulates movement of swarm of
bees searching for food. It is, unlike GAs, real-coded algorithm. It was originally proposed for use
in neural networks [7] and was later adopted as global optimizer.

The position of each agent is changed according to its own experience and that of its neighbors.
The position x of i-th agent in subsequent iteration is changed by adding velocity v to a current
position:

xi (t) = xi (t− 1) + vi (t) , (14.1)

where the velocity vector v is defined as follows:

vi (t) = W · vi (t− 1) + C1 · r1 [xpbest − xi (t)] + C2 · r2 [xgbest − xi (t)] , (14.2)

where r1, r2 ∈ 〈0, 1〉 are random values, W is inertia weight, C1 and C2 are cognitive and social
learning factors, respectively, xpbest is personal best position and xgbest is global best position.

Inertia weight introduces the impact of the previous velocities on current velocity. It is controlled
by parameter W (see Subsection 7.1.3). The default value of W in FOPS is [0.8, 0.5]. The two
values denotes, that W is linearly decreased from 0.8 to 0.5 during the simulation. Agents follow
its inertia weight more in early iterations than in late iterations. The larger the W value the larger
the impact of velocity from previous iteration.

Cognitive learning factor C1 represents attraction of agent to its own success, i.e. agent is
attracted to the best position it has previously been at - xpbest. The default value of parameter
C1 in FOPS is 1.5. The larger the C1 the more attracted the particle is to the position xpbest (see
Subsection 7.1.3).

Social learning factor C2 represents attraction of agent to success of its neighbors, i.e. agent is
attracted to the best position found so far - xgbest. The default value of parameter C2 in FOPS is
1.5. The larger the C2 the more attracted the particle is to the position xgbest (see Subsection 7.1.3).

When an agent’s position is updated according to Equation 14.1, there is a chance, that the
new position will be out of decision variables limits. In such situation, boundary conditions have to
be exploited. Boundary conditions modify agents position and velocity vector. Decision variables
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that are out of its limits are set to a value of adjacent limit. Velocity vector is modified according
to parameter BT (Boundary Type, see Subsection 7.1.3). There are three types of boundaries in
FOPS:

� Reflecting (default): elements of velocity vector, which decision variables are out of limits
are negated.

� Absorbing: elements of velocity vector, which decision variables are out of limits are zeroed.

� Invisible: no action is taken. Velocity vector is in few iterations pushed in a proper direc-
tion.

14.1.3 SODE

The Differential Evolution algorithm was introduced in 1997 [8]. Implemented version corresponds
with DE/rand/1/bin version [9]. As a name suggests, it is also evolutionary algorithm. Initially,
random population is generated and in each iteration of algorithm the trial vector u is created from
agent’s positions x (crossover operation) using the equation:

ui,j (t) = xj,r3 + F · (xj,r2 − xj,r1) , (14.3)

where j denotes j-th decision variable, r1, r2, r3 are randomly picked, mutually different and
different from i agents indices and parameter F is scaling factor.

Equation 14.3 is used with the probability of PC (Probability of Crossover) or if j=jrand, where
jrand = 1, 2, . . . nVars is random value.

Both PC and F are control parameters that remains fixed during whole execution of algorithm.
Lower value of PC (e.g. 0.1) are better for separable problems while larger values (e.g. 0.9) are
better for non-separable problems. Parameter F controls speed and robustness of the search. Lower
value the increases convergence speed with the risk of stacking into a local optimum. Default value
of PC in FOPS is 0.2 and default value of F in FOPS is also 0.2.

14.1.4 SOSOMA

SOMA stands for Self=Organizing Migrating Algorithm first introduced by Ivan Zelinka in 2000.
Its comprehensive review can be found in [10]. The algorithm works with set of agents that is
generated randomly inside the decision space. At every iteration, the agent with the best value of
objective function is assigned as so called leader. All other agents then visit temporal positions
according to:

tp,s(i) = xp(i− 1) + [xq(i− 1)− xp(i− 1)]× s

ST
× PL ∗PVp,s, (14.4)

where xp(i) is the position of the leader in the i-th iteration, xq is the q-th agent position. Index
s goes from 1 to ST which is the number of steps used in one migration. Parameter PL defines the
length of the path (if PL = 1 the migration ends exactly at leaders position). Symbol ∗ denotes the
element-wise multiplication. Perturbation vector PV prevents the algorithm to get stuck in the
local minimum. It is composed according to:

PVn =

{
1 ifrnd(n) > PR

0 ifrnd(n) ≤ PR
(14.5)

where PV denotes the probability of perturbation defined by a used. If any part of the PV is
equal to zero, the migration does not respect corresponding dimension. If the objective function
value of any agent’s trial position gets better than the previous one, the agent changes its position.
If the objective function value is not decreased, the agent remains in the same position.

There exist three variants of the SOMA algorithm. In ’AllToOne’ variant, all agents from the
set migrate towards the leader. In ’AllToAll’, all combination of agents positions are used for the
migration. In ’AllToRand’ every agent migrates towards randomly chosen one.
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Figure 14.3: Pseudocode of the Nelder–Mead optimization algorithm.

14.1.5 SONEME

Nelder–Mead or simplex algorithm is fully described e.g. in [11]. If we want to solve a problem of
dimension N − 1, it works with a simplex of dimension N (line segment for 1D, triangle for 2D,
tetrahedral for 4D, and so on). The i-th member of the initial simplex is created:

xi = x0 + pei +
N∑
k 6=i

qek, (14.6)

where x0 is the initial guess set by a user, ei denotes the i-th column of the identity matrix of size
N + 1. Coefficients p and q are computed:

p =
a

N
√

2

(√
N + 1 +N − 1

)
, (14.7)

q =
a

N
√

2

(√
N + 1− 1

)
(14.8)

with a being the initial simplex size chosen by a user.

Three methods for transformation of the simplex are defined, namely ’reflection’:

pr = pm + α(pm − ph), (14.9)

’expansion’:

pe = pm + β(ph − pm), (14.10)

and ’contraction’:

pc = pm + γ(ps − pm). (14.11)

Here pm is the centroid position computed as a mean of ps (simplex member with second best
objective function value) and pl (the one with the worst value). Symbol ph denotes the point
with the best objective function value. The recommended values of the reflection, expansion, and
contraction coefficients are α = 1, β = 0.5, and α = 2, respectively. The pseudocode of the
algorithm is shown in Fig. ??.
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14.1.6 SONEW

The Newton method works with one solution at a time. The initial guess x0 defined by user. Then,
it is updated at every iteration i according to:

xi = xi−1 + H(xi−1)−1 · g(xi−1) (14.12)

where H(xi−1) is the Hessian matrix computed for position xi−1 while g(xi−1 is the gradient vector
for the same point.

14.1.7 SOCMAES

To be added

14.2 Multi-objective Algorithms

14.2.1 NSGA-II

Elitist Non-dominated Sorting Genetic Algorithm is an improved version of NSGA algorithm [12].
It was proposed in 2002 [1]. As a name suggests it is elitist algorithm and selection operation is
substituted by non-dominated sorting.

In initial iteration of the algorithm, random population is generated and selection, crossover and
mutation is performed similarly as in SOGA algorithm (see Subsection 14.1.1). Afterwards, parent
and offspring populations are sorted according to its non-dominated levels by fast non-dominated
sorting algorithm [1]. Exactly nAgents individuals are selected according to their non-dominated
level to form new parent population for next iteration (see Figure 14.4).

If some non-dominated level has to be trimmed to fit into precisely nAgents individuals, oper-
ation that maintains diversity of non-dominated set has to be used. Such method in FOPS uses
crowded distance as a metric for the pruning [1]. Unfortunately, the crowding distance selection
works satisfactorily only with 2-dimensional space, i.e. 2 objective functions. To make it work
also for many-objective problems (3 or more), concept of Equal-average Nearest Neighbor Search
(ENNS) [13] has to be adopted, which basically converts N -dimensional space into 2-dimensional
space.

Settings parameters of NSGA-II algorithms are PC, PM, BP and nCP (see Subsection 14.1.1) and
their default values in FOPS are the same as for SOGA algorithm (see Subsection 7.1.9. Parameter
tournament selection TS is used only in an initial iteration. Therefore, its impact on the overall
behavior of algorithm is negligible.

14.2.2 MOPSO

There are many modifications of Particle Swarm Optimization algorithm for solving Multi-objective
problems. The first extension came in 1999 [14]. The implemented algorithm in FOPS is based on
version presented in [15].

The main difference from the single-objective version is the selection of global bests. In single-
objective version only one solution is said to be the global best, but a multi-objective problem
presents multiple trade-off solutions that are said to be the good ones.

Non-dominated (trade-off) solutions, in other words Pareto-front, are stored in an external
archive. External archive holds all the non-dominated solutions found so far and its members are
used as global bests in velocity update (see Equation 14.2).

At the beginning of the algorithm, random population is generated and an external archive is
initialized with non-dominated members of random population. Personal bests are found in a same
way as in SOPSO algorithm (see Subsection 14.1.2). Global bests are selected among external
archive members. The selection is based on two principles:

� Random assignment.
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Figure 14.4: Non-dominated sorting based selection in NSGA-II algorithm [1].

� Minimal Euclidean distance between agents fitness values and external archive members
fitness values.

The ratio between global bests assigned according to Euclidean distance and randomly assigned
is controlled by parameter RGB (Random Global Best). It expresses the percentage of randomly
assigned global bests. Therefore, RGB=1 expresses that all global bests are selected randomly and
algorithm focuses on exploration. RGB=0 enforces the fast convergence to optima. The default
value of RGB in FOPS is 1.

Some MOPSO implementations uses mutation operation to promote diversity in an optimization
process. The PSO algorithm is known for its fast convergence, which might lead to premature
convergence to local optima on multi-objective version of PSO. Diversity in FOPS’s MOPSO is
promoted by random assignment of global best solution, therefore the RGB property is set to 1 as
default.

The overall number of agents in external archive has to be limited, due to algorithm performance.
External archive size is equal to the population size - nAgents. If there are more than nAgents

non-dominated candidates for an external archive, solutions have to be pruned with regard to the
diversity of non-dominated set. It is ensured similarly as in NSGA-II (see Subsection 14.2.1) [1],
[13].

Other setting parameters are analogous to parameters of SOPSO (see Subsection 14.1.2) - W,
C1, C2 and BT . Their default values in FOPS are identical to SOPSO’s (see Subsection 7.1.10).

14.2.3 GDE3

Third version of Generalized Differential Evolution is an extension of presented SODE algorithm
(see Subsection 14.1.3). It was proposed in 2005 in [16].

The multi-objective version extends the single-objective one by the selection rule between deci-
sion and trial vector if both solutions are non-dominated. In such cases, both solutions are accepted
and the population is extended.

Nonetheless, the overall number of agents is fixed throughout the simulation. If the popula-
tion size exceeds the nAgents size at the end of an iteration, non-dominated solutions has to be
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pruned with regard to diversity of non-dominated set. It is ensured similarly as in NSGA-II (see
Subsection 14.2.1) [1],[13].

Setting parameters of GDE3 are also PC and F. Default values of both parameters in FOPS are
0.2 (see Subsection 7.1.11).

14.3 Algorithms with Variable Number of Dimensions

14.3.1 VNDPSO

To be added

14.3.2 VNDMOPSO

To be added

14.3.3 VNDGDE3

To be added
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Chapter 15

Benchmark Problems

15.1 Multi-objective

15.1.1 MO2D

This is a simple example of two-objective optimization problem. Problem has two decision variables.
Problem is not scalable, therefore all input arguments will be ignored.

Limits:

x1 ∈ 〈0.1, 1〉 , (15.1)

x2 ∈ 〈0, 1〉 . (15.2)

Fitness functions:

f1 (x) = x1, (15.3)

f2 (x) =
1 + x2

x1
. (15.4)

Optimal position:

x1 ∈ 〈0.1, 1〉 , (15.5)

x2 = 0. (15.6)

Optimal positions are reached if x1 ∈ 〈0.1, 1〉 and x2 = 0. Optimal positions and fitness values
are calculated during the problem initialization.

15.1.2 MO3D

This is a simple example of three-objective optimization problem taken from [17]. Problem has two
decision variables. Problem is not scalable, therefore all input arguments will be ignored.

Limits:

x1 ∈ 〈−2, 2〉 , (15.7)

x2 ∈ 〈−2, 2〉 . (15.8)

Fitness functions:

f1 (x) = x2
1 + (x2 − 1)2 , (15.9)

f2 (x) = x2
1 + (x2 + 1)2 + 1, (15.10)

f3 (x) = (x1 − 1)2 + x2
2 + 2. (15.11)

Optimal positions are inside the triangular area defined by corner points [0, -1], [1, 0] and [0, 1]
and they are also stored in position property of mat-file MO3D.

Optimal fitness values are stored in fitness property of mat-file MO3D.
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15.1.3 MOCantilaver

This problem is taken from [2]. It is a simple constrained problem with two decision variables and
two objectives. The problem function serves as manual for problem m-file definition. Problem is
not scalable, therefore all input arguments will be ignored.

Limits:

x1 ∈ 〈10, 50〉 mm, (15.12)

x2 ∈ 〈200, 1000〉 mm, (15.13)

where x1 denotes the diameter of the cantilaver and x2 denotes the length of the cantilaver.
Fitness functions:

f1 (x) = ρ
π · x2

1

4
x2, (15.14)

f2 (x) = δ (x) =
64P · x3

2

3E · π · x4
1

, (15.15)

where ρ = 7800 kg/m3, P = 1 kN and E = 207 GPa. First objectives denotes the weight of
cantilaver and second objective - δ - denotes the end deflection of cantilaver.

Constraint functions:

g1 (x) = Sy ≥
32P · x2

π · x3
1

, (15.16)

g2 (x) = δmax ≥ δ (x) , (15.17)

where Sy = 300 MPa and δmax = 5 mm.
Optimal positions are stored in position property of mat-file MOCantilaver. Optimal solutions

are obtained if x2 = 200 and x1 ∈ 〈15.14, 50〉. Solutions with x1 ∈ 〈10, 15.14〉 are infeasible.
Optimal fitness values are stored in fitness property of mat-file MOCantilaver.

15.1.4 MOCones

This is a simple two-objective constrained optimization problem. The optimization algorithm tries
to find cone with minimal possible lateral surface area and total surface area, where both objectives
are conficting and the constraint function defines minimal volume of the cone. Problem has two
decision variables and it is not scalable, therefore all input arguments will be ignored.

Limits:

x1 ∈ 〈0, 10〉 cm, (15.18)

x2 ∈ 〈0, 20〉 cm, (15.19)

where x1 denotes radius of base of cone and x2 denotes height of cone.
Fitness functions:

f1 (x) = S = π · x1 · s, (15.20)

f2 (x) = T = π · x2
1 + π · x1 · s, (15.21)

where f1 denotes lateral surface area, f2 denotes total surface area and s =
√
x2

1 + x2
2 is the slant

length.
Constraint function:

g1 (x) = Vmin <
π · x2

1 · x2

3
, (15.22)

where Vmin = 200 cm3 is the minimal volume of cone.
It is difficult to explicitly state the optimal positions. Optimal positions are stored in position

property of mat-file MOCones and they were obtained thank to very dense sampling of decision
space.

Optimal fitness values are stored in fitness property of mat-file MOCones.
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15.1.5 MODTLZ1

This is the first benchmark problem from Deb et al.’s test suite [18]. The problem is scalable in
both - decision and objective - spaces. The default number of decision variables is D = 7 and the
default number of objectives is M = 3.

Limits:
xi ∈ 〈0, 1〉 for i = 1, 2, . . . D, (15.23)

where D denotes the number of decision variables and it is arbitrary.
Fitness functions:

f1 (x) = (1 + h (xM :D)) 0.5
M−1∏
i=1

xi, (15.24)

fm=2:M−1 (x) = (1 + h (xM :D)) 0.5

(
M−m∏
i=1

xi

)
(1− xM−m+1) , (15.25)

fM (x) = (1 + h (xM :D)) 0.5 (1− x1) , (15.26)

h (z) = 100

{
k +

[
k∑
i=1

(zi − 0.5)2 − cos (20π (zi − 0.5))

]}
, (15.27)

where k = D −M + 1 and M is the number of objectives.
Optimal solutions corresponds to x1 ∈ 〈0, 1〉, x2 ∈ 〈0, 1〉 and z = 0.5, where z = x3, x4, . . . xD.

Optimal positions and fitness values are calculated during the problem initialization.

15.1.6 MODTLZ2

This is the second benchmark problem from Deb et al.’s test suite [18]. The problem is scalable in
both - decision and objective - spaces. The default number of decision variables is D = 12 and the
default number of objectives is M = 3.

Limits:
xi ∈ 〈0, 1〉 for i = 1, 2, . . . D, (15.28)

where D means the number of decision variables and it is arbitrary.
Fitness functions:

f1 (x) = (1 + h (xM :D))
M−1∏
i=1

cos (xi · π/2) , (15.29)

fm=2:M−1 (x) = (1 + h (xM :D))

[
M−m∏
i=1

cos (xi · π/2)

]
sin (xM−m+1 · π/2) , (15.30)

fM (x) = (1 + h (xM :D)) sin (x1 · π/2) , (15.31)

h (z) =

k∑
i=1

(zi − 0.5)2 , (15.32)

where k = D −M + 1 and M is the number of objectives.
Optimal solutions corresponds to x1 ∈ 〈0, 1〉, x2 ∈ 〈0, 1〉 and z = 0.5, where z = x3, x4, . . . xD.

Optimal positions and fitness values are calculated during the problem initialization.

15.1.7 MODTLZ3

This is the third benchmark problem from Deb et al.’s test suite [18]. The problem is scalable in
both - decision and objective - spaces. The default number of decision variables is D = 12 and the
default number of objectives is M = 3.

Limits:
xi ∈ 〈0, 1〉 for i = 1, 2, . . . D, (15.33)
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where D means the number of decision variables and it is arbitrary.

Fitness functions:

f1 (x) = (1 + h (xM :D))

M−1∏
i=1

cos (xi · π/2) , (15.34)

fm=2:M−1 (x) = (1 + h (xM :D))

[
M−m∏
i=1

cos (xi · π/2)

]
sin (xM−m+1 · π/2) , (15.35)

fM (x) = (1 + h (xM :D)) sin (x1 · π/2) , (15.36)

h (z) = 100

{
k +

[
k∑
i=1

(zi − 0.5)2 − cos (20π (zi − 0.5))

]}
, (15.37)

where k = D −M + 1 and M is the number of objectives.

Optimal solutions corresponds to x1 ∈ 〈0, 1〉, x2 ∈ 〈0, 1〉 and z = 0.5, where z = x3, x4, . . . xD.
Optimal positions and fitness values are calculated during the problem initialization.

15.1.8 MODTLZ4

This is the fourth benchmark problem from Deb et al.’s test suite [18]. The problem is scalable in
both - decision and objective - spaces. The default number of decision variables is D = 12 and the
default number of objectives is M = 3.

Limits:

xi ∈ 〈0, 1〉 for i = 1, 2, . . . D, (15.38)

where D means the number of decision variables and it is arbitrary.

Fitness functions:

f1 (x) = (1 + h (xM :D))
M−1∏
i=1

cos (xαi · π/2) , (15.39)

fm=2:M−1 (x) = (1 + h (xM :D))

[
M−m∏
i=1

cos (xαi · π/2)

]
sin
(
xαM−m+1 · π/2

)
, (15.40)

fM (x) = (1 + h (xM :D)) sin (xα1 · π/2) , (15.41)

h (z) =
k∑
i=1

(zi − 0.5)2 , (15.42)

where parameter α = 100, k = D −M + 1 and M is the number of objectives.

Optimal solutions corresponds to x1 ∈ 〈0, 1〉, x2 ∈ 〈0, 1〉 and z = 0.5, where z = x3, x4, . . . xD.
Optimal positions and fitness values are calculated during the problem initialization.

15.1.9 MODTLZ5

This is the fifth benchmark problem from Deb et al.’s test suite [18]. The problem is scalable in
both - decision and objective - spaces. The default number of decision variables is D = 12 and the
default number of objectives is M = 3.

Limits:

xi ∈ 〈0, 1〉 for i = 1, 2, . . . D, (15.43)

where D means the number of decision variables and it is arbitrary.
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Fitness functions:

f1 (x) = (1 + h (xM :D))
M−1∏
i=1

cos (θi · π/2) , (15.44)

fm=2:M−1 (x) = (1 + h (xM :D))

[
M−m∏
i=1

cos (θi · π/2)

]
sin (θM−m+1 · π/2) , (15.45)

fM (x) = (1 + h (xM :D)) sin (θ1 · π/2) , (15.46)

h (z) =

k∑
i=1

(zi − 0.5)2 , (15.47)

θi =


xi for i = 1,

1+2h·xi
2(1+h) for i = 2, 3, ... (M − 1) ,

(15.48)

where k = D −M + 1 and M is the number of objectives.
Optimal solutions corresponds to x1 ∈ 〈0, 1〉, x2 ∈ 〈0, 1〉 and z = 0.5, where z = x3, x4, . . . xD.

Optimal positions and fitness values are calculated during the problem initialization.

15.1.10 MODTLZ6

This is the sixth benchmark problem from Deb et al.’s test suite [18]. The problem is scalable in
both - decision and objective - spaces. The default number of decision variables is D = 12 and the
default number of objectives is M = 3.

Limits:
xi ∈ 〈0, 1〉 for i = 1, 2, . . . D, (15.49)

where D means the number of decision variables and it is arbitrary.
Fitness functions:

f1 (x) = (1 + h (xM :D))
M−1∏
i=1

cos (θi · π/2) , (15.50)

fm=2:M−1 (x) = (1 + h (xM :D))

[
M−m∏
i=1

cos (θi · π/2)

]
sin (θM−m+1 · π/2) , (15.51)

fM (x) = (1 + h (xM :D)) sin (θ1 · π/2) , (15.52)

h (z) =
k∑
i=1

z0.1
i , (15.53)

θi =


xi for i = 1,

1+2h·xi
2(1+h) for i = 2, 3, ... (M − 1) ,

(15.54)

where k = D −M + 1 and M is the number of objectives.
Optimal solutions corresponds to x1 ∈ 〈0, 1〉, x2 ∈ 〈0, 1〉 and z = 0, where z = x3, x4, . . . xD.

Optimal positions and fitness values are calculated during the problem initialization.

15.1.11 MODTLZ7

This is the seventh benchmark problem from Deb et al.’s test suite [18]. The problem is scalable
in both - decision and objective - spaces. The default number of decision variables is D = 22 and
the default number of objectives is M = 3.

Limits:
xi ∈ 〈0, 1〉 for i = 1, 2, . . . D, (15.55)
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where D means the number of decision variables and it is arbitrary. Fitness functions:

fm=1:M−1 (x) = xm, (15.56)

fM (x) = (1 + h (xM :D))

{
M −

[
M−1∑
i=1

fi
1 + h (xM :D)

(1 + sin (3π · fi))

]}
, (15.57)

h (z) = 1 +
9

k

k∑
i=1

zi, (15.58)

where k = D −M + 1 and M is the number of objectives.

Optimal solutions corresponds to x1 ∈ 〈0, 1〉, x2 ∈ 〈0, 1〉 and z = 0, where z = x3, x4, . . . xD.
Optimal positions and fitness values are calculated during the problem initialization.

15.1.12 MOFON

Fonseca and Fleming’s test problem is taken from [2]. It is a problem with three decision variables
and two objectives. Problem is not scalable, therefore all input arguments will be ignored.

Limits:

xi ∈ 〈−4, 4〉 for i = 1, 2, 3. (15.59)

Fitness functions:

f1 (x) = 1− exp

[
−

3∑
i=1

(
xi −

1√
3

)2
]
, (15.60)

f2 (x) = 1− exp

[
−

3∑
i=1

(
xi +

1√
3

)2
]
. (15.61)

Optimal solutions are stored in position property of mat-file MOFON and they are located on
diagonal line defined by:

x1 = x2 = x3 ∈
〈
− 1√

3
,

1√
3

〉
. (15.62)

Optimal fitness values are stored in fitness property of mat-file MOFON.

15.1.13 MOKUR

Kursawe’s test problem is taken from [2]. It is a problem with three decision variables and two
objectives. Problem is not scalable, therefore all input arguments will be ignored.

Limits:

xi ∈ 〈−5, 5〉 for i = 1, 2, 3. (15.63)

Fitness functions:

f1 (x) =

[
2∑
i=1

−10 · exp

(
−0.2 ·

√
x2
i + x2

i+1

)]
, (15.64)

f2 (x) =

[
3∑
i=1

|xi|0.8 + 5 · sin
(
x3
i

)]
. (15.65)

It is difficult to explicitly state the optimal positions. More information can be found in [2].
Optimal positions are stored in position property of mat-file MOKUR and they were obtained thanks
to very dense sampling of decision space.

Optimal fitness values are stored in fitness property of mat-file MOKUR.
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15.1.14 MOLZ1

This is the first benchmark problem from Li and Zhang’s test suite [19]. The problem is scalable
in decision space. The default number of decision variables is D = 10.

Limits:

xi ∈ 〈0, 1〉 for i = 1, 2, . . . D, (15.66)

where D means the number of decision variables and it is arbitrary.
Fitness functions:

f1 (x) = x1 +
2

|J1|
∑
j∈J1

[xj − h (j, x1)]2 , (15.67)

f2 (x) = 1−
√
x1 +

2

|J2|
∑
j∈J2

[xj − h (j, x1)]2 , (15.68)

h (j) = x
0.5(1+ 3j−6

D−2 )
1 for j = 1, 2, . . . D, (15.69)

J1 = 3, 5, . . . D, (15.70)

J2 = 2, 4, . . . D. (15.71)

Optimal solutions corresponds to xj = h (j), where j = 2, 3, . . . D. Optimal positions and fitness
values are calculated during the problem initialization.

15.1.15 MOLZ2

This is the second benchmark problem from Li and Zhang’s test suite [19]. The problem is scalable
in decision space. The default number of decision variables is D = 30.

Limits:

x1 ∈ 〈0, 1〉 , (15.72)

xi ∈ 〈−1, 1〉 for i = 2, 3, . . . D, (15.73)

where D means the number of decision variables and it is arbitrary.
Fitness functions:

f1 (x) = x1 +
2

|J1|
∑
j∈J1

[xj − h (j, x1)]2 , (15.74)

f2 (x) = 1−
√
x1 +

2

|J2|
∑
j∈J2

[xj − h (j, x1)]2 , (15.75)

h (j) = sin

(
6πx1 +

jπ

D

)
for j = 1, 2, . . . D, (15.76)

J1 = 3, 5, . . . D, (15.77)

J2 = 2, 4, . . . D. (15.78)

Optimal solutions corresponds to xj = h (j), where j = 2, 3, . . . D. Optimal positions and fitness
values are calculated during the problem initialization.

15.1.16 MOLZ3

This is the third benchmark problem from Li and Zhang’s test suite [19]. The problem is scalable
in decision space. The default number of decision variables is D = 30.

Limits:

x1 ∈ 〈0, 1〉 , (15.79)

xi ∈ 〈−1, 1〉 for i = 2, 3, . . . D, (15.80)
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where D means the number of decision variables and it is arbitrary.

Fitness functions:

f1 (x) = x1 +
2

|J1|
∑
j∈J1

[xj − h1 (j, x1)]2 , (15.81)

f2 (x) = 1−
√
x1 +

2

|J2|
∑
j∈J2

[xj − h2 (j, x1)]2 , (15.82)

h1 (j) = 0.8x1 cos

(
6πx1 +

jπ

D

)
for j = 1, 2, . . . D, (15.83)

h2 (j) = 0.8x1 sin

(
6πx1 +

jπ

D

)
for j = 1, 2, . . . D, (15.84)

J1 = 3, 5, . . . D, (15.85)

J2 = 2, 4, . . . D. (15.86)

Optimal solutions corresponds to:

xj =

{
h1 (j) where j ∈ J1,

h2 (j) where j ∈ J2.
(15.87)

Optimal positions and fitness values are calculated during the problem initialization.

15.1.17 MOLZ4

This is the fourth benchmark problem from Li and Zhang’s test suite [19]. The problem is scalable
in decision space. The default number of decision variables is D = 30.

Limits:

x1 ∈ 〈0, 1〉 , (15.88)

xi ∈ 〈−1, 1〉 for i = 2, 3, . . . D, (15.89)

where D means the number of decision variables and it is arbitrary.

Fitness functions:

f1 (x) = x1 +
2

|J1|
∑
j∈J1

[xj − h1 (j, x1)]2 , (15.90)

f2 (x) = 1−
√
x1 +

2

|J2|
∑
j∈J2

[xj − h2 (j, x1)]2 , (15.91)

h1 (j) = 0.8x1 cos

(
6πx1 + jπ

D

3

)
for j = 1, 2, . . . D, (15.92)

h2 (j) = 0.8x1 sin

(
6πx1 +

jπ

D

)
for j = 1, 2, . . . D, (15.93)

J1 = 3, 5, . . . D, (15.94)

J2 = 2, 4, . . . D. (15.95)

Optimal solutions corresponds to:

xj =

{
h1 (j) for j ∈ J1,

h2 (j) for j ∈ J2.
(15.96)

Optimal positions and fitness values are calculated during the problem initialization.
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15.1.18 MOLZ5

This is the fifth benchmark problem from Li and Zhang’s test suite [19]. The problem is scalable
in decision space. The default number of decision variables is D = 30.

Limits:

x1 ∈ 〈0, 1〉 , (15.97)

xi ∈ 〈−1, 1〉 for i = 2, 3, . . . D, (15.98)

where D means the number of decision variables and it is arbitrary.
Fitness functions:

f1 (x) = x1 +
2

|J1|
∑
j∈J1

[xj − h1 (j, x1)]2 , (15.99)

f2 (x) = 1−
√
x1 +

2

|J2|
∑
j∈J2

[xj − h2 (j, x1)]2 , (15.100)

h1 (j) =

[
0.3x2

1 cos

(
24πx1 +

4jπ

D

)
+ 0.6x1

]
cos

(
6πx1 +

jπ

D

)
for j = 1, 2, . . . D, (15.101)

h2 (j) =

[
0.3x2

1 cos

(
24πx1 +

4jπ

D

)
+ 0.6x1

]
sin

(
6πx1 +

jπ

D

)
for j = 1, 2, . . . D, (15.102)

J1 = 3, 5, . . . D, (15.103)

J2 = 2, 4, . . . D. (15.104)

Optimal solutions corresponds to:

xj =

{
h1 (j) for j ∈ J1,

h2 (j) for j ∈ J2.
(15.105)

Optimal positions and fitness values are calculated during the problem initialization.

15.1.19 MOLZ6

This is the sixth benchmark problem from Li and Zhang’s test suite [19]. The problem is scalable
in decision space. The default number of decision variables is D = 10.

Limits:

x1 ∈ 〈0, 1〉 , (15.106)

x2 ∈ 〈0, 1〉 , (15.107)

xi ∈ 〈−2, 2〉 for i = 3, 4, . . . D, (15.108)

where D means the number of decision variables and it is arbitrary.
Fitness functions:

f1 (x) = cos (0.5x1π) cos (0.5x2π) +
2

|J1|
∑
j∈J1

[xj − h (j, x1, x2)]2 , (15.109)

f2 (x) = cos (0.5x1π) sin (0.5x2π) +
2

|J2|
∑
j∈J2

[xj − h (j, x1, x2)]2 , (15.110)

f3 (x) = sin (0.5x1π) +
2

|J3|
∑
j∈J3

[xj − h (j, x1, x2)]2 , (15.111)

h (j) = 2x2 sin

(
2πx1 +

jπ

D

)
, for j = 1, 2, . . . D, (15.112)

J1 = 4, 7, . . . D, (15.113)

J2 = 5, 8, . . . D, (15.114)

J3 = 3, 6, . . . D. (15.115)
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Optimal solutions corresponds to xj = h (j), where j = 3, 4, . . . D. Optimal positions and fitness
values are calculated during the problem initialization.

15.1.20 MOLZ7

This is the seventh benchmark problem from Li and Zhang’s test suite [19]. The problem is scalable
in decision space. The default number of decision variables is D = 10.

Limits:

xi ∈ 〈0, 1〉 for i = 1, 2, . . . D, (15.116)

where D means the number of decision variables and it is arbitrary.

Fitness functions:

f1 (x) = x1+
2

|J1|
∑
j∈J1

[
4y2
j − cos (8yjπ) + 1

]
, (15.117)

f2 (x) = 1−
√
x1+

2

|J2|
∑
j∈J2

[
4y2
j − cos (8yjπ) + 1

]
, (15.118)

yj = xj − h (j) for j = 2, 3, . . . D, (15.119)

h (j) = x
0.5(1+ 3j−6

D−2 )
1 for j = 1, 2, . . . D, (15.120)

J1 = 3, 5, . . . D, (15.121)

J2 = 2, 4, . . . D. (15.122)

Optimal solutions corresponds to xj = h (j), where j = 2, 3, . . . D. Optimal positions and fitness
values are calculated during the problem initialization.

15.1.21 MOLZ8

This is the eighth benchmark problem from Li and Zhang’s test suite [19]. The problem is scalable
in decision space. The default number of decision variables is D = 10.

Limits:

xi ∈ 〈0, 1〉 for i = 1, 2, . . . D, (15.123)

where D means the number of decision variables and it is arbitrary.

Fitness functions:

f1 (x) = x1+
2

|J1|

4
∑
j∈J1

y2
j − 2

∏
j∈J1

cos

(
20yjπ√

j

)
+ 2

 , (15.124)

f2 (x) = 1−
√
x1+

2

|J2|

4
∑
j∈J2

y2
j − 2

∏
j∈J2

cos

(
20yjπ√

j

)
+ 2

 , (15.125)

yj = xj − h (j) for j = 2, 3, . . . D, (15.126)

h (j) = x
0.5(1+ 3j−6

D−2 )
1 for j = 1, 2, . . . D, (15.127)

J1 = 3, 5, . . . D, (15.128)

J2 = 2, 4, . . . D. (15.129)

Optimal solutions corresponds to xj = h (j), where j = 2, 3, . . . D. Optimal positions and fitness
values are calculated during the problem initialization.

100



CHAPTER 15. BENCHMARK PROBLEMS

15.1.22 MOLZ9

This is the ninth benchmark problem from Li and Zhang’s test suite [19]. The problem is scalable
in decision space. The default number of decision variables is D = 30.

Limits:

x1 ∈ 〈0, 1〉 , (15.130)

xi ∈ 〈−1, 1〉 for i = 2, 3, . . . D, (15.131)

where D means the number of decision variables and it is arbitrary.
Fitness functions:

f1 (x) = x1 +
2

|J1|
∑
j∈J1

[xj − h (j, x1)]2 , (15.132)

f2 (x) = 1− x2
1 +

2

|J2|
∑
j∈J2

[xj − h (j, x1)]2 , (15.133)

h (j) = sin

(
6πx1 +

jπ

D

)
for j = 1, 2, . . . D, (15.134)

J1 = 3, 5, . . . D, (15.135)

J2 = 2, 4, . . . D. (15.136)

Optimal solutions corresponds to xj = h (j), where j = 2, 3, . . . D. Optimal positions and fitness
values are calculated during the problem initialization.

15.1.23 MOPOL

Poloni’s test problem is taken from [2]. It is a problem with two decision variables and two
objectives. Problem is not scalable, therefore all input arguments will be ignored.

Limits:

xi ∈ 〈−π, π〉 for i = 1, 2. (15.137)

Fitness functions:

f1 (x) =
[
1 + (A1 −B1 (x))2 + (A2 −B2 (x))2

]
, (15.138)

f2 (x) =
[
(x1 + 3)2 + (x2 + 1)2

]
, (15.139)

where:

A1 = 0.5 sin (1) − 2 cos (1) + sin (2) − 1.5 cos (2) , (15.140)

A2 = 1.5 sin (1) − cos (1) + 2 sin (2) − 0.5 cos (2) , (15.141)

B1 (x) = 0.5 sin (x1)− 2 cos (x1) + sin (x2)− 1.5 cos (x2) , (15.142)

B2 (x) = 1.5 sin (x1)− cos (x1) + 2 sin (x2)− 0.5 cos (x2) . (15.143)

It is difficult to explicitly state the optimal positions. More information can be found in [2]. Optimal
positions are stored in position property of mat-file MOPOL and they were obtained thanks to very
dense sampling of decision space.

Optimal fitness values are stored in fitness property of mat-file MOPOL.

15.1.24 MOSCH

Schaffer’s test problem is taken from [2]. It is a two-objective problem with only one decision
variable. It is possible to redefine limits of this problem by problem input argument (see Subsection
6.1.1, specifically Listing 6.6).
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Limits:

x1 ∈ 〈−A,A〉 , (15.144)

where A ∈ 〈2,∞〉 defines the difficulty of the problem. The higher the A value is the more
complicated the problem is.

Fitness functions:

f1 (x) = x2, (15.145)

f2 (x) = (x− 2)2 , (15.146)

Optimal solutions are stored in position property of mat-file MOSCH and they corresponds to
x1 ∈ 〈0, 2〉.

Optimal fitness values are stored in fitness property of mat-file MOSCH.

15.1.25 MOUF4

This is the fourth benchmark problem of test instances for the CEC 2009 [20]. The problem is
scalable in decision space. The default number of decision variables is D = 30.

Limits:

x1 ∈ 〈0, 1〉 , (15.147)

xi ∈ 〈−2, 2〉 for i = 2, 3, . . . D, (15.148)

where D means the number of decision variables and it is arbitrary.

Fitness functions:

f1 (x) = x1 +
2

|J1|
∑
j∈J1

h (yj) , (15.149)

f2 (x) = 1− x2
1 +

2

|J2|
∑
j∈J2

h (yj) , (15.150)

yj = xj − sin

(
6πx1 +

jπ

D

)
for j = 1, 2, . . . D, (15.151)

h (y) =
|y|

1 + exp (2 |y|)
, (15.152)

J1 = 3, 5, . . . D, (15.153)

J2 = 2, 4, . . . D. (15.154)

Optimal solutions corresponds to xj = sin
(

6πx1 + jπ
D

)
, where j = 2, 3, . . . D. Optimal positions

and fitness values are calculated during the problem initialization.

15.1.26 MOUF5

This is the fifth benchmark problem of test instances for the CEC 2009 [20]. The problem is scalable
in decision space. The default number of decision variables is D = 30.

Limits:

x1 ∈ 〈0, 1〉 , (15.155)

xi ∈ 〈−1, 1〉 for i = 2, 3, . . . D, (15.156)

where D means the number of decision variables and it is arbitrary.
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Fitness functions:

f1 (x) = x1+

(
1

2N + ε

)
|sin (2Nπx1)|+ 2

|J1|
∑
j∈J1

h (yj) , (15.157)

f2 (x) = 1− x1+

(
1

2N + ε

)
|sin (2Nπx1)|+ 2

|J2|
∑
j∈J2

h (yj) , (15.158)

yj = xj − sin

(
6πx1 +

jπ

D

)
for j = 1, 2, . . . D, (15.159)

h (y) = 2y2 − cos (4πy) + 1, (15.160)

J1 = 3, 5, . . . D, (15.161)

J2 = 2, 4, . . . D. (15.162)

Variable N is an integer and it defines the number of the solutions of the true Pareto-front. The
variable was set to N = 10, therefore the true Pareto-front has 2N + 1 = 21 solutions. Constant
ε > 0 is set to ε = 0.1.

Optimal solutions corresponds to xj = sin
(

6πx1 + jπ
D

)
, where j = 2, 3, . . . D. Optimal positions

and fitness values are calculated during the problem initialization.

15.1.27 MOUF6

This is the sixth benchmark problem of test instances for the CEC 2009 [20]. The problem is
scalable in decision space. The default number of decision variables is D = 30.

Limits:

x1 ∈ 〈0, 1〉 , (15.163)

xi ∈ 〈−1, 1〉 for i = 2, 3, . . . D, (15.164)

where D means the number of decision variables and it is arbitrary.

Fitness functions:

f1 (x) = x1+ max

{
0, 2

(
1

2N
+ ε

)
sin (2Nπx1)

}
+ (15.165)

2

|J1|

4
∑
j∈J1

y2
j − 2

∏
j∈J1

cos

(
20yjπ√

j

)
+ 2

 ,
f2 (x) = 1− x1+ max

{
0, 2

(
1

2N
+ ε

)
sin (2Nπx1)

}
+ (15.166)

2

|J2|

4
∑
j∈J2

y2
j − 2

∏
j∈J2

cos

(
20yjπ√

j

)
+ 2

 ,
yj =xj − sin

(
6πx1 +

jπ

D

)
for j = 1, 2, . . . D, (15.167)

J1 =3, 5, . . . D, (15.168)

J2 =2, 4, . . . D. (15.169)

Variable N is an integer and it defines the number of disconnected parts of the true Pareto-
front. The variable was set to N = 2, therefore the true Pareto-front has N + 1 = 3 disconnected
parts. Constant ε > 0 is set to ε = 0.1.

Optimal solutions corresponds to xj = sin
(

6πx1 + jπ
D

)
, where j = 2, 3, . . . D. Optimal positions

and fitness values are calculated during the problem initialization.
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15.1.28 MOUF7

This is the seventh benchmark problem of test instances for the CEC 2009 [20]. The problem is
scalable in decision space. The default number of decision variables is D = 30.

Limits:

x1 ∈ 〈0, 1〉 , (15.170)

xi ∈ 〈−1, 1〉 for i = 2, 3, . . . D, (15.171)

where D means the number of decision variables and it is arbitrary.
Fitness functions:

f1 (x) = 5
√
x1+

2

|J1|
∑
j∈J1

y2
j , (15.172)

f2 (x) = 1− 5
√
x1+

2

|J2|
∑
j∈J2

y2
j , (15.173)

yj =xj − sin

(
6πx1 +

jπ

D

)
for j = 1, 2, . . . D, (15.174)

J1 = 3, 5, . . . D, (15.175)

J2 = 2, 4, . . . D. (15.176)

Optimal solutions corresponds to xj = sin
(

6πx1 + jπ
D

)
, where j = 2, 3, . . . D. Optimal positions

and fitness values are calculated during the problem initialization.

15.1.29 MOUF9

This is the ninth benchmark problem of test instances for the CEC 2009 [20]. The problem is
scalable in decision space. The default number of decision variables is D = 30.

Limits:

x1 ∈ 〈0, 1〉 , (15.177)

x2 ∈ 〈0, 1〉 , (15.178)

xi ∈ 〈−2, 2〉 for i = 3, 4, . . . D, (15.179)

where D means the number of decision variables and it is arbitrary.
Fitness functions:

f1 (x) =0.5
[
max

{
0, (1 + ε)

(
1− 4 (2x1 − 1)2

)}
+ 2x1

]
x2+ (15.180)

2

|J1|
∑
j∈J1

[
xj − 2x2 sin

(
2πx1 +

jπ

D

)]2

,

f2 (x) =0.5
[
max

{
0, (1 + ε)

(
1− 4 (2x1 − 1)2

)}
− 2x1 + 2

]
x2+ (15.181)

2

|J2|
∑
j∈J2

[
xj − 2x2 sin

(
2πx1 +

jπ

D

)]2

,

f3 (x) =1− x2+ (15.182)

2

|J3|
∑
j∈J3

[
xj − 2x2 sin

(
2πx1 +

jπ

D

)]2

,

J1 = 4, 7, . . . D, (15.183)

J2 = 5, 8, . . . D, (15.184)

J3 = 3, 6, . . . D. (15.185)
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Constant ε > 0 is set to ε = 0.1.

Optimal solutions are divided into two disconected parts where x1 ∈ [0, 0.25]∪[0.75, 1], 0 ≤ x2 ≤ 1,

and xj = 2x2 sin
(

2πx1 + jπ
D

)
, where j = 3, 4, . . . D. Optimal positions and fitness values are cal-

culated during the problem initialization.

15.1.30 MOUF10

This is the tenth benchmark problem of test instances for the CEC 2009 [20]. The problem is
scalable in decision space. The default number of decision variables is D = 30.

Limits:

x1 ∈ 〈0, 1〉 , (15.186)

x2 ∈ 〈0, 1〉 , (15.187)

xi ∈ 〈−2, 2〉 for i = 3, 4, . . . D, (15.188)

where D means the number of decision variables and it is arbitrary.

Fitness functions:

f1 (x) = cos (0.5x1π) cos (0.5x2π)
2

|J1|
∑
j∈J1

[
4y2
j − cos (8πyj) + 1

]
, (15.189)

f2 (x) = cos (0.5x1π) sin (0.5x2π)
2

|J2|
∑
j∈J2

[
4y2
j − cos (8πyj) + 1

]
, (15.190)

f3 (x) = sin (0.5x1π)
2

|J3|
∑
j∈J3

[
4y2
j − cos (8πyj) + 1

]
, (15.191)

yj = xj − 2x2 sin

(
2πx1 +

jπ

D

)
for j = 1, 2, . . . D, (15.192)

J1 = 4, 7, . . . D, (15.193)

J2 = 5, 8, . . . D, (15.194)

J3 = 3, 6, . . . D. (15.195)

Optimal solutions corresponds to xj = 2x2 sin
(

2πx1 + jπ
D

)
, where j = 3, 4, . . . D. Optimal

positions and fitness values are calculated during the problem initialization.

15.1.31 MOWFG1

This is the first benchmark problem from WFG test suite [21]. The problem is scalable in both,
decision space and objective space. The default number of decision variables is D = 10 and the
default number of objective functions is M = 2 .

Limits:

xi ∈ 〈0, 2i〉 for i = 1, 2, . . . D, (15.196)

where D means the number of decision variables and it is arbitrary.

To obtain a fitness function values, the positions are normalized at first. Afterwards, several
transition functions are applied on the normalized positions and the position parameters are cal-
culated. Finally, shape functions are applied to position parameters and the fitness values are
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deduced.

f1 (x) =yM + 2

M−1∏
i=1

[
1− cos

(π
2
yi

)]
,
∗s:convex (15.197)

f2 (x) =yM + 4

M−2∏
i=1

[
1− cos

(π
2
yi

)] [
1− sin

(π
2
yM−1

)]
,
∗s:convex (15.198)

f3 (x) =yM + 6
M−3∏
i=1

[
1− cos

(π
2
yi

)] [
1− sin

(π
2
yM−1

)]
,
∗s:convex (15.199)

fM−1 (x) =yM + 2 (M − 1)
[
1− cos

(π
2
y1

)] [
1− sin

(π
2
yM−1

)]
,
∗s:convex (15.200)

fM (x) =yM + 2M

[
1− y1 −

cos (2Aπy1 + π/2)

2Aπ

]B
,
∗s:mixed (15.201)

where:

zi =
xi
2i

for i = 1, 2, . . . D,
∗norm (15.202)

t1,i =

{
zi if i = 1, 2, . . . ,K,
|zi−A|

|bA−zic|+A , if i = K + 1, . . . , D,
∗t:s:linear

(15.203)

t2,i =


t1,i if i = 1, 2, . . . ,K,

A+
A(B−t1,i) min{0,bt1,i−Bc}

B −
(1−A)(t1,i−C) min{0,bC−t1,ic}

1−C , if i = K + 1, . . . , D,
∗t:b:flat

(15.204)

t3,i =t A2,i ,
∗t:b:poly (15.205)

t4,i =

{
h (t3,J1 , 2J1) , if i = 1, . . . ,M − 1,

h (t3,J2 , 2J2) , if i = M,
(15.206)

h (v,w) =

|V|∑
i=1

wivi/

|V|∑
i=1

wi,
∗t:r:sum (15.207)

J1 =
(i− 1)K

M − 1
+ 1, . . . ,

iK

M − 1
, (15.208)

J2 =K + 1, . . . , D, (15.209)

yi =

{
(t4,i − 0.5) max (1, t4,M ) + 0.5, if i = 1, . . . ,M − 1,

∗p:param

t4,M , if i = M.
(15.210)

Equations contains several marks denoting the following shape or transition functions known
from [21]:

� s:convex: Convex shape function.

� s:mixed: Mixed shape function. Input arguments: A = 5, B = 1.

� norm: Normalizing function.

� t:s:linear: Shift linear transition function. Input arguments: A = 0.35.

� t:b:flat: Bias flat transition function. Input arguments: A = 0.8, B = 0.75, C = 0.85.

� t:b:poly: Bias polynomial transition function. Input arguments: A = 0.02.

� t:r:sum: Reduction weighted sum transition function.

� p:param: Calculate position parameters function.

Optimal solutions corresponds to xj = 2j0.35, where j = k + 1, k + 2, . . . D. Note that first k
decision variables are called position parameters and its combination is responsible for the position
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of a solution of the Pareto-front. Remaining decision variables are called distance parameters and
its combination is responsible for the distance of a solution from the true Pareto-front.

Optimal positions and fitness values are calculated during the problem initialization.

15.1.32 MOWFG2

This is the second benchmark problem from WFG test suite [21]. The problem is scalable in both,
decision space and objective space. The default number of decision variables is D = 10 and the
default number of objective functions is M = 2 .

Limits:

xi ∈ 〈0, 2i〉 for i = 1, 2, . . . D, (15.211)

where D means the number of decision variables and it is arbitrary.
To obtain a fitness function values, the positions are normalized at first. Afterwards, several

transition functions are applied on the normalized positions and the position parameters are cal-
culated. Finally, shape functions are applied to position parameters and the fitness values are
deduced.

f1 (x) =yM + 2
M−1∏
i=1

[
1− cos

(π
2
yi

)]
,
∗s:convex (15.212)

f2 (x) =yM + 4
M−2∏
i=1

[
1− cos

(π
2
yi

)] [
1− sin

(π
2
yM−1

)]
,
∗s:convex (15.213)

f3 (x) =yM + 6

M−3∏
i=1

[
1− cos

(π
2
yi

)] [
1− sin

(π
2
yM−1

)]
,
∗s:convex (15.214)

fM−1 (x) =yM + 2 (M − 1)
[
1− cos

(π
2
y1

)] [
1− sin

(π
2
yM−1

)]
,
∗s:convex (15.215)

fM (x) =yM + 2M
[
1− yB1 cos2

(
AπyC1

)]
,
∗s:disconnect (15.216)

where:

zi =
xi
2i

for i = 1, 2, . . . D,
∗norm (15.217)

t1,i =

{
zi if i = 1, 2, . . . ,K,
|zi−A|

|bA−zic|+A , if i = K + 1, . . . , D,
∗t:s:linear

(15.218)

t2,i =


t1,i if i = 1, 2, . . . ,K,

h1

({
t1,K+2(i−K)−1, t1,K+2(i−K)

}
, 2
)

if i = K + 1, . . . , (D +K) /2,

(15.219)

t3,i =


h2 (t3,J1 , {1, . . . , 1}) , if i = 1, . . . ,M − 1,

h2 (t3,J2 , {1, . . . , 1}) , if i = M,

(15.220)

h1 (a, A) =

∑|a|
j=1

[
aj +

∑A−2
k=0

∣∣aj − a1+(j+k) mod |a|
∣∣]

|a|
A dA/2e (1 + 2A− 2dA/2e)

,
∗t:r:nonsep (15.221)

h2 (v,w) =

|V|∑
i=1

wivi/

|V|∑
i=1

wi,
∗t:r:sum (15.222)

J1 =
(i− 1)K

M − 1
+ 1, . . . ,

iK

M − 1
, (15.223)

J2 =K + 1, . . . , (D +K) /2, (15.224)

yi =

{
(t3,i − 0.5) max (1, t3,M ) + 0.5, if i = 1, . . . ,M − 1,

∗p:param

t3,M , if i = M.
(15.225)
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Equations contains several marks denoting the following shape or transition functions known
from [21]:

� s:convex: Convex shape function.

� s:disconnect: Disconnected shape function. Input arguments: A = 5, B = 1, C = 1.

� norm: Normalizing function.

� t:s:linear: Shift linear transition function. Input arguments: A = 0.35.

� t:r:nonsep: Reduction non-separable transition function. Input arguments: A = 2.

� t:r:sum: Reduction weighted sum transition function.

� p:param: Calculate position parameters function.

Optimal solutions corresponds to xj = 2j0.35, where j = k + 1, k + 2, . . . D. Note that first k
decision variables are called position parameters and its combination is responsible for the position
of a solution of the Pareto-front. Remaining decision variables are called distance parameters and
its combination is responsible for the distance of a solution from the true Pareto-front.

Optimal positions and fitness values are calculated during the problem initialization.

15.1.33 MOWFG3

This is the third benchmark problem from WFG test suite [21]. The problem is scalable in both,
decision space and objective space. The default number of decision variables is D = 10 and the
default number of objective functions is M = 2 .

Limits:

xi ∈ 〈0, 2i〉 for i = 1, 2, . . . D, (15.226)

where D means the number of decision variables and it is arbitrary.

To obtain a fitness function values, the positions are normalized at first. Afterwards, several
transition functions are applied on the normalized positions and the position parameters are cal-
culated. Finally, shape functions are applied to position parameters and the fitness values are
deduced.

f1 (x) =yM + 2

M−1∏
i=1

[yi] ,
∗s:linear (15.227)

f2 (x) =yM + 4
M−2∏
i=1

[yi] (1− yM−1)
∗s:linear (15.228)

f3 (x) =yM + 6
M−3∏
i=1

[yi] (1− yM−2) ,
∗s:linear (15.229)

fM−1 (x) =yM + 2 (M − 1) [y1] (1− y2) ,
∗s:linear (15.230)

fM (x) =yM + 2M (1− y1) ,
∗s:linear (15.231)

108



CHAPTER 15. BENCHMARK PROBLEMS

where:

zi =
xi
2i

for i = 1, 2, . . . D,
∗norm (15.232)

t1,i =

{
zi if i = 1, 2, . . . ,K,
|zi−A|

|bA−zic|+A , if i = K + 1, . . . , D,
∗t:s:linear

(15.233)

t2,i =


t1,i if i = 1, 2, . . . ,K,

h1

({
t1,K+2(i−K)−1, t1,K+2(i−K)

}
, 2
)

if i = K + 1, . . . , (D +K) /2,

(15.234)

t3,i =


h2 (t3,J1 , {1, . . . , 1}) , if i = 1, . . . ,M − 1,

h2 (t3,J2 , {1, . . . , 1}) , if i = M,

(15.235)

h1 (a, A) =

∑|a|
j=1

[
aj +

∑A−2
k=0

∣∣aj − a1+(j+k) mod |a|
∣∣]

|a|
A dA/2e (1 + 2A− 2dA/2e)

,
∗t:r:nonsep (15.236)

h2 (v,w) =

|V|∑
i=1

wivi/

|V|∑
i=1

wi,
∗t:r:sum (15.237)

J1 =
(i− 1)K

M − 1
+ 1, . . . ,

iK

M − 1
, (15.238)

J2 =K + 1, . . . , (D +K) /2, (15.239)

yi =

{
(t3,i − 0.5) max (1, t3,M ) + 0.5, if i = 1, . . . ,M − 1,

∗p:param

t3,M , if i = M.
(15.240)

Equations contains several marks denoting the following shape or transition functions known
from [21]:

� s:linear: Linear shape function.

� norm: Normalizing function.

� t:s:linear: Shift linear transition function. Input arguments: A = 0.35.

� t:r:nonsep: Reduction non-separable transition function. Input arguments: A = 2.

� t:r:sum: Reduction weighted sum transition function.

� p:param: Calculate position parameters function.

Optimal solutions corresponds to xj = 2j0.35, where j = k + 1, k + 2, . . . D. Note that first k
decision variables are called position parameters and its combination is responsible for the position
of a solution of the Pareto-front. Remaining decision variables are called distance parameters and
its combination is responsible for the distance of a solution from the true Pareto-front.

Optimal positions and fitness values are calculated during the problem initialization.

15.1.34 MOWFG4

This is the fourth benchmark problem from WFG test suite [21]. The problem is scalable in both,
decision space and objective space. The default number of decision variables is D = 10 and the
default number of objective functions is M = 2 .

Limits:

xi ∈ 〈0, 2i〉 for i = 1, 2, . . . D, (15.241)

where D means the number of decision variables and it is arbitrary.
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To obtain a fitness function values, the positions are normalized at first. Afterwards, several
transition functions are applied on the normalized positions and the position parameters are cal-
culated. Finally, shape functions are applied to position parameters and the fitness values are
deduced.

f1 (x) =yM + 2

M−1∏
i=1

[sin (0.5πyi)] ,
∗s:concave (15.242)

f2 (x) =yM + 4

M−2∏
i=1

[sin (0.5πyi)] [cos (0.5πyM−1)]
∗s:concave (15.243)

f3 (x) =yM + 6
M−3∏
i=1

[sin (0.5πyi)] [cos (0.5πyM−2)] ,
∗s:concave (15.244)

fM−1 (x) =yM + 2 (M − 1) [sin (0.5πy1)] [cos (0.5πy2)] ,
∗s:concave (15.245)

fM (x) =yM + 2M [cos (0.5πy1)] ,
∗s:concave (15.246)

where:

zi =
xi
2i

for i = 1, 2, . . . D,
∗norm (15.247)

t1,i =
1 + cos

[
(4A+ 2)π

(
0.5− |zi−C|

2(bC−zic+C)

)]
+ 4B

(
|zi−C|

2(bC−zic+C)

)2

B + 2
for i = 1, . . . D,

∗t:s:multi

(15.248)

t2,i =

{
h (t1,J1 , {1, . . . , 1}) , if i = 1, . . . ,M − 1,

h (t1,J2 , {1, . . . , 1}) , if i = M,
(15.249)

h (v,w) =

|V|∑
i=1

wivi/

|V|∑
i=1

wi,
∗t:r:sum (15.250)

J1 =
(i− 1)K

M − 1
+ 1, . . . ,

iK

M − 1
, (15.251)

J2 =K + 1, . . . , D, (15.252)

yi =

{
(t3,i − 0.5) max (1, t3,M ) + 0.5, if i = 1, . . . ,M − 1,

∗p:param

t3,M , if i = M.
(15.253)

Equations contains several marks denoting the following shape or transition functions known
from [21]:

� s:concave: Concave shape function.

� norm: Normalizing function.

� t:s:multi: Shift multi-modal transition function. Input arguments: A = 30, B = 10,
C = 0.35.

� t:r:sum: Reduction weighted sum transition function.

� p:param: Calculate position parameters function.

Optimal solutions corresponds to xj = 2j0.35, where j = k + 1, k + 2, . . . D. Note that first k
decision variables are called position parameters and its combination is responsible for the position
of a solution of the Pareto-front. Remaining decision variables are called distance parameters and
its combination is responsible for the distance of a solution from the true Pareto-front.

Optimal positions and fitness values are calculated during the problem initialization.

110



CHAPTER 15. BENCHMARK PROBLEMS

15.1.35 MOWFG5

This is the fifth benchmark problem from WFG test suite [21]. The problem is scalable in both,
decision space and objective space. The default number of decision variables is D = 10 and the
default number of objective functions is M = 2 .

Limits:

xi ∈ 〈0, 2i〉 for i = 1, 2, . . . D, (15.254)

where D means the number of decision variables and it is arbitrary.
To obtain a fitness function values, the positions are normalized at first. Afterwards, several

transition functions are applied on the normalized positions and the position parameters are cal-
culated. Finally, shape functions are applied to position parameters and the fitness values are
deduced.

f1 (x) =yM + 2
M−1∏
i=1

[sin (0.5πyi)] ,
∗s:concave (15.255)

f2 (x) =yM + 4

M−2∏
i=1

[sin (0.5πyi)] [cos (0.5πyM−1)]
∗s:concave (15.256)

f3 (x) =yM + 6

M−3∏
i=1

[sin (0.5πyi)] [cos (0.5πyM−2)] ,
∗s:concave (15.257)

fM−1 (x) =yM + 2 (M − 1) [sin (0.5πy1)] [cos (0.5πy2)] ,
∗s:concave (15.258)

fM (x) =yM + 2M [cos (0.5πy1)] ,
∗s:concave (15.259)

where:

zi =
xi
2i

for i = 1, 2, . . . D,
∗norm (15.260)

t1,i =1 + (|zi −A| −B)× for i = 1, . . . D,
∗t:s:decept (15.261)

×

[
bzi −A+Bc

(
1− C + A−B

B

)
A−B

+
bzi −A+Bc

(
1− C + A−B

B

)
1−A−B

+
1

B

]

t2,i =

{
h (t1,J1 , {1, . . . , 1}) , if i = 1, . . . ,M − 1,

h (t1,J2 , {1, . . . , 1}) , if i = M,
(15.262)

h (v,w) =

|V|∑
i=1

wivi/

|V|∑
i=1

wi,
∗t:r:sum (15.263)

J1 =
(i− 1)K

M − 1
+ 1, . . . ,

iK

M − 1
, (15.264)

J2 =K + 1, . . . , D, (15.265)

yi =

{
(t3,i − 0.5) max (1, t3,M ) + 0.5, if i = 1, . . . ,M − 1,

∗p:param

t3,M , if i = M.
(15.266)

Equations contains several marks denoting the following shape or transition functions known
from [21]:

� s:concave: Concave shape function.

� norm: Normalizing function.

� t:s:decept: Shift deceptive transition function. Input arguments: A = 0.35, B = 0.001,
C = 0.05.

� t:r:sum: Reduction weighted sum transition function.
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� p:param: Calculate position parameters function.

Optimal solutions corresponds to xj = 2j0.35, where j = k + 1, k + 2, . . . D. Note that first k
decision variables are called position parameters and its combination is responsible for the position
of a solution of the Pareto-front. Remaining decision variables are called distance parameters and
its combination is responsible for the distance of a solution from the true Pareto-front.

Optimal positions and fitness values are calculated during the problem initialization.

15.1.36 MOWFG6

This is the sixth benchmark problem from WFG test suite [21]. The problem is scalable in both,
decision space and objective space. The default number of decision variables is D = 10 and the
default number of objective functions is M = 2 .

Limits:

xi ∈ 〈0, 2i〉 for i = 1, 2, . . . D, (15.267)

where D means the number of decision variables and it is arbitrary.

To obtain a fitness function values, the positions are normalized at first. Afterwards, several
transition functions are applied on the normalized positions and the position parameters are cal-
culated. Finally, shape functions are applied to position parameters and the fitness values are
deduced.

f1 (x) =yM + 2
M−1∏
i=1

[sin (0.5πyi)] ,
∗s:concave (15.268)

f2 (x) =yM + 4

M−2∏
i=1

[sin (0.5πyi)] [cos (0.5πyM−1)]
∗s:concave (15.269)

f3 (x) =yM + 6
M−3∏
i=1

[sin (0.5πyi)] [cos (0.5πyM−2)] ,
∗s:concave (15.270)

fM−1 (x) =yM + 2 (M − 1) [sin (0.5πy1)] [cos (0.5πy2)] ,
∗s:concave (15.271)

fM (x) =yM + 2M [cos (0.5πy1)] ,
∗s:concave (15.272)

where:

zi =
xi
2i

for i = 1, 2, . . . D,
∗norm (15.273)

t1,i =

{
zi if i = 1, 2, . . . ,K,
|zi−A|

|bA−zic|+A , if i = K + 1, . . . , D,
∗t:s:linear

(15.274)

t2,i =


h
({
t1,(i−1)K/(M−1)+1, . . . , t1,iK/(M−1)

}
,K/ (M − 1)

)
if i = 1, . . . ,M − 1,

h ({t1,K+1, . . . , t1,D} , D −K) if i = M,

(15.275)

h (a, A) =

∑|a|
j=1

[
aj +

∑A−2
k=0

∣∣aj − a1+(j+k) mod |a|
∣∣]

|a|
A dA/2e (1 + 2A− 2dA/2e)

,
∗t:r:nonsep (15.276)

yi =

{
(t3,i − 0.5) max (1, t3,M ) + 0.5, if i = 1, . . . ,M − 1,

∗p:param

t3,M , if i = M.
(15.277)

Equations contains several marks denoting the following shape or transition functions known
from [21]:

� s:concave: Concave shape function.
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� norm: Normalizing function.

� t:s:linear: Shift linear transition function. Input arguments: A = 0.35.

� t:r:nonsep: Reduction non-separate transition function.

� p:param: Calculate position parameters function.

Optimal solutions corresponds to xj = 2j0.35, where j = k + 1, k + 2, . . . D. Note that first k
decision variables are called position parameters and its combination is responsible for the position
of a solution of the Pareto-front. Remaining decision variables are called distance parameters and
its combination is responsible for the distance of a solution from the true Pareto-front.

Optimal positions and fitness values are calculated during the problem initialization.

15.1.37 MOWFG7

This is the seventh benchmark problem from WFG test suite [21]. The problem is scalable in both,
decision space and objective space. The default number of decision variables is D = 10 and the
default number of objective functions is M = 2 .

Limits:

xi ∈ 〈0, 2i〉 for i = 1, 2, . . . D, (15.278)

where D means the number of decision variables and it is arbitrary.

To obtain a fitness function values, the positions are normalized at first. Afterwards, several
transition functions are applied on the normalized positions and the position parameters are cal-
culated. Finally, shape functions are applied to position parameters and the fitness values are
deduced.

f1 (x) =yM + 2

M−1∏
i=1

[sin (0.5πyi)] ,
∗s:concave (15.279)

f2 (x) =yM + 4

M−2∏
i=1

[sin (0.5πyi)] [cos (0.5πyM−1)]
∗s:concave (15.280)

f3 (x) =yM + 6

M−3∏
i=1

[sin (0.5πyi)] [cos (0.5πyM−2)] ,
∗s:concave (15.281)

fM−1 (x) =yM + 2 (M − 1) [sin (0.5πy1)] [cos (0.5πy2)] ,
∗s:concave (15.282)

fM (x) =yM + 2M [cos (0.5πy1)] ,
∗s:concave (15.283)
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where:

zi =
xi
2i

for i = 1, 2, . . . D,
∗norm (15.284)

t1,i =


A− [1− 2h ([zi+1, . . . , zD] , [1, . . . , 1])] if i = 1, 2, . . . ,K,

∗t:b:param

|b0.5− h ([zi+1, . . . , zD] , [1, . . . , 1])c+A|

zi, if i = K + 1, . . . , D,

(15.285)

t2,i =

{
t1,i if i = 1, 2, . . . ,K,
|t1,i−A|

|bA−t1,ic|+A , if i = K + 1, . . . , D,
∗t:s:linear

(15.286)

t3,i =

{
h (t2,J1 , {1, . . . , 1}) , if i = 1, . . . ,M − 1,

h (t2,J2 , {1, . . . , 1}) , if i = M,
(15.287)

h (v,w) =

|V|∑
i=1

wivi/

|V|∑
i=1

wi,
∗t:r:sum (15.288)

J1 =
(i− 1)K

M − 1
+ 1, . . . ,

iK

M − 1
, (15.289)

J2 =K + 1, . . . , D, (15.290)

yi =

{
(t3,i − 0.5) max (1, t3,M ) + 0.5, if i = 1, . . . ,M − 1,

∗p:param

t3,M , if i = M.
(15.291)

Equations contains several marks denoting the following shape or transition functions known
from [21]:

� s:concave: Concave shape function.

� norm: Normalizing function.

� t:b:param: Bias parameter dependent transition function. Input arguments: u = t:r:sum,
A = 0.98/49.98, B = 0.02, C = 50.

� t:s:linear: Shift linear transition function. Input arguments: A = 0.35.

� t:r:sum: Reduction weighted sum transition function.

� p:param: Calculate position parameters function.

Optimal solutions corresponds to xj = 2j0.35, where j = k + 1, k + 2, . . . D. Note that first k
decision variables are called position parameters and its combination is responsible for the position
of a solution of the Pareto-front. Remaining decision variables are called distance parameters and
its combination is responsible for the distance of a solution from the true Pareto-front.

Optimal positions and fitness values are calculated during the problem initialization.

15.1.38 MOWFG8

This is the eighth benchmark problem from WFG test suite [21]. The problem is scalable in both,
decision space and objective space. The default number of decision variables is D = 10 and the
default number of objective functions is M = 2 .

Limits:

xi ∈ 〈0, 2i〉 for i = 1, 2, . . . D, (15.292)

where D means the number of decision variables and it is arbitrary.
To obtain a fitness function values, the positions are normalized at first. Afterwards, several

transition functions are applied on the normalized positions and the position parameters are cal-
culated. Finally, shape functions are applied to position parameters and the fitness values are
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deduced.

f1 (x) =yM + 2

M−1∏
i=1

[sin (0.5πyi)] ,
∗s:concave (15.293)

f2 (x) =yM + 4
M−2∏
i=1

[sin (0.5πyi)] [cos (0.5πyM−1)]
∗s:concave (15.294)

f3 (x) =yM + 6
M−3∏
i=1

[sin (0.5πyi)] [cos (0.5πyM−2)] ,
∗s:concave (15.295)

fM−1 (x) =yM + 2 (M − 1) [sin (0.5πy1)] [cos (0.5πy2)] ,
∗s:concave (15.296)

fM (x) =yM + 2M [cos (0.5πy1)] ,
∗s:concave (15.297)

where:

zi =
xi
2i

for i = 1, 2, . . . D,
∗norm (15.298)

t1,i =


zi, if i = 1, 2, . . . ,K,

A− [1− 2h ([zi+1, . . . , zD] , [1, . . . , 1])]

|b0.5− h ([zi+1, . . . , zD] , [1, . . . , 1])c+A| if i = K + 1, . . . , D,
∗t:b:param

(15.299)

t2,i =

{
t1,i if i = 1, 2, . . . ,K,
|t1,i−A|

|bA−t1,ic|+A , if i = K + 1, . . . , D,
∗t:s:linear

(15.300)

t3,i =

{
h (t2,J1 , {1, . . . , 1}) , if i = 1, . . . ,M − 1,

h (t2,J2 , {1, . . . , 1}) , if i = M,
(15.301)

h (v,w) =

|V|∑
i=1

wivi/

|V|∑
i=1

wi,
∗t:r:sum (15.302)

J1 =
(i− 1)K

M − 1
+ 1, . . . ,

iK

M − 1
, (15.303)

J2 =K + 1, . . . , D, (15.304)

yi =

{
(t3,i − 0.5) max (1, t3,M ) + 0.5, if i = 1, . . . ,M − 1,

∗p:param

t3,M , if i = M.
(15.305)

Equations contains several marks denoting the following shape or transition functions known
from [21]:

� s:concave: Concave shape function.

� norm: Normalizing function.

� t:b:param: Bias parameter dependent transition function. Input arguments: u = t:r:sum,
A = 0.98/49.98, B = 0.02, C = 50.

� t:s:linear: Shift linear transition function. Input arguments: A = 0.35.

� t:r:sum: Reduction weighted sum transition function.

� p:param: Calculate position parameters function.

Optimal solutions corresponds to xj = 2j0.35, where j = k + 1, k + 2, . . . D. Note that first k
decision variables are called position parameters and its combination is responsible for the position
of a solution of the Pareto-front. Remaining decision variables are called distance parameters and
its combination is responsible for the distance of a solution from the true Pareto-front.

Optimal positions and fitness values are calculated during the problem initialization.
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15.1.39 MOWFG9

This is the ninth benchmark problem from WFG test suite [21]. The problem is scalable in both,
decision space and objective space. The default number of decision variables is D = 10 and the
default number of objective functions is M = 2 .

Limits:

xi ∈ 〈0, 2i〉 for i = 1, 2, . . . D, (15.306)

where D means the number of decision variables and it is arbitrary.
To obtain a fitness function values, the positions are normalized at first. Afterwards, several

transition functions are applied on the normalized positions and the position parameters are cal-
culated. Finally, shape functions are applied to position parameters and the fitness values are
deduced.

f1 (x) =yM + 2

M−1∏
i=1

[sin (0.5πyi)] ,
∗s:concave (15.307)

f2 (x) =yM + 4
M−2∏
i=1

[sin (0.5πyi)] [cos (0.5πyM−1)]
∗s:concave (15.308)

f3 (x) =yM + 6

M−3∏
i=1

[sin (0.5πyi)] [cos (0.5πyM−2)] ,
∗s:concave (15.309)

fM−1 (x) =yM + 2 (M − 1) [sin (0.5πy1)] [cos (0.5πy2)] ,
∗s:concave (15.310)

fM (x) =yM + 2M [cos (0.5πy1)] ,
∗s:concave (15.311)

where:

zi =
xi
2i

for i = 1, 2, . . . D,
∗norm (15.312)

t1,i =


A− [1− 2h ([zi+1, . . . , zD] , [1, . . . , 1])] if i = 1, 2, . . . , D − 1,

∗t:b:param

|b0.5− h ([zi+1, . . . , zD] , [1, . . . , 1])c+A|

zi, if i = D,

(15.313)

t2,i =



1 + (|t1,i −A| −B)× for i = 1, . . .K,
∗t:s:decept

×
[
bt1,i−A+Bc(1−C+A−B

B )
A−B +

bt1,i−A+Bc(1−C+A−B
B )

1−A−B + 1
B

]

1+cos

[
(4A+2)π

(
0.5− |t1,i−C|

2(bC−t1,ic+C)

)]
+4B

(
|t1,i−C|

2(bC−t1,ic+C)

)2

B+2 for i = 1, . . . D,
∗t:s:multi

(15.314)

t3,i =


h
({
t2,(i−1)K/(M−1)+1, . . . , t2,iK/(M−1)

}
,K/ (M − 1)

)
if i = 1, . . . ,M − 1,

h ({t2,K+1, . . . , t2,D} , D −K) if i = M,

(15.315)

h (a, A) =

∑|a|
j=1

[
aj +

∑A−2
k=0

∣∣aj − a1+(j+k) mod |a|
∣∣]

|a|
A dA/2e (1 + 2A− 2dA/2e)

,
∗t:r:nonsep (15.316)

yi =

{
(t3,i − 0.5) max (1, t3,M ) + 0.5, if i = 1, . . . ,M − 1,

∗p:param

t3,M , if i = M.
(15.317)

Equations contains several marks denoting the following shape or transition functions known
from [21]:
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� s:concave: Concave shape function.

� norm: Normalizing function.

� t:b:param: Bias parameter dependent transition function. Input arguments: u = t:r:sum,
A = 0.98/49.98, B = 0.02, C = 50.

� t:s:decept: Shift deception transition function. Input arguments: A = 0.35, B = 0.001,
C = 0.05.

� t:s:multi: Shift multi-modal transition function. Input arguments: A = 0.35, B = 95,
C = 0.35.

� t:r:nonsep: Reduction weighted sum transition function.

� p:param: Calculate position parameters function.

Optimal solutions corresponds to xj = 2j0.35, where j = k + 1, k + 2, . . . D. Note that first k
decision variables are called position parameters and its combination is responsible for the position
of a solution of the Pareto-front. Remaining decision variables are called distance parameters and
its combination is responsible for the distance of a solution from the true Pareto-front.

Optimal positions and fitness values are calculated during the problem initialization.

15.1.40 MOZDT1

This is the first benchmark problem from Zitzler et al.’s test suite [1]. The problem is scalable in
the decision space. The default number of decision variables is D = 30.

Limits:
xi ∈ 〈0, 1〉 for i = 1, 2, . . . D, (15.318)

where D means the number of decision variables and it is arbitrary.
Fitness functions:

f1 (x) = x1, (15.319)

f2 (x) = h (x)

[
1−

√
x1

h (x)

]
, (15.320)

h (x) = 1 + 9

∑D
i=2 xi
D − 1

. (15.321)

Optimal solutions corresponds to x1 ∈ 〈0, 1〉 and xi = 0, where i = 2, 3, . . . D. Optimal positions
and fitness values are calculated during the problem initialization.

15.1.41 MOZDT2

This is the second benchmark problem from Zitzler et al.’s test suite [1]. The problem is scalable
in the decision space. The default number of decision variables is D = 30.

Limits:
xi ∈ 〈0, 1〉 for i = 1, 2, . . . D, (15.322)

where D means the number of decision variables and it is arbitrary.
Fitness functions:

f1 (x) = x1, (15.323)

f2 (x) = h (x)

[
1−

(
x1

h (x)

)2
]
, (15.324)

h (x) = 1 + 9

∑D
i=2 xi
D − 1

. (15.325)

Optimal solutions corresponds to x1 ∈ 〈0, 1〉 and xi = 0, where i = 2, 3, . . . D. Optimal positions
and fitness values are calculated during the problem initialization.
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15.1.42 MOZDT3

This is the third benchmark problem from Zitzler et al.’s test suite [1]. The problem is scalable in
the decision space. The default number of decision variables is D = 30.

Limits:
xi ∈ 〈0, 1〉 for i = 1, 2, . . . D, (15.326)

where D means the number of decision variables and it is arbitrary.
Fitness functions:

f1 (x) = x1, (15.327)

f2 (x) = h (x)

[
1−

√
x1

h (x)
− x1

h (x)
sin (10π · x1)

]
, (15.328)

h (x) = 1 + 9

∑D
i=2 xi
D − 1

. (15.329)

Optimal solutions corresponds to x1 ∈ 〈0, 1〉 and xi = 0, where i = 2, 3, . . . D. Optimal positions
and fitness values are calculated during the problem initialization.

15.1.43 MOZDT4

This is the fourth benchmark problem from Zitzler et al.’s test suite [1]. The problem is scalable
in the decision space. The default number of decision variables is D = 10.

Limits:

x1 ∈ 〈0, 1〉 , (15.330)

xi ∈ 〈−5, 5〉 for i = 2, 3, . . . D, (15.331)

where D means the number of decision variables and it is arbitrary.
Fitness functions:

f1 (x) = x1, (15.332)

f2 (x) = h (x)

[
1−

√
x1

h (x)

]
, (15.333)

h (x) = 1 + 10 (D − 1) +

[
D∑
i=2

x2
i − 10 cos (4π · xi)

]
. (15.334)

Optimal solutions corresponds to x1 ∈ 〈0, 1〉 and xi = 0, where i = 2, 3, . . . D. Optimal positions
and fitness values are calculated during the problem initialization.

15.1.44 MOZDT6

This is the sixth benchmark problem from Zitzler et al.’s test suite [1]. The problem is scalable in
the decision space. The default number of decision variables is D = 10.

Limits:
xi ∈ 〈0, 1〉 for i = 1, 2, . . . D, (15.335)

where D means the number of decision variables and it is arbitrary.
Fitness functions:

f1 (x) = 1− exp (−4x1) sin6 (6π · x1) , (15.336)

f2 (x) = h (x)

[
1−

(
f1 (x)

h (x)

)2
]
, (15.337)

h (x) = 1 + 9

[∑D
i=2 xi
D − 1

]0.25

. (15.338)

Optimal solutions corresponds to x1 ∈ 〈0, 1〉 and xi = 0, where i = 2, 3, . . . D. Optimal positions
and fitness values are calculated during the problem initialization.
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15.2 Single-objective

15.2.1 SOACK

Ackley’s function is a single-objective problem [22]. The problem is scalable in the decision space.
The default number of decision variables is D = 2.

Limits:
xi ∈ 〈−15, 30〉 for i = 1, 2, . . . D, (15.339)

where D means number of decision variables and is arbitrary.
Fitness function:

f (x) = −20 exp

−0.2

√√√√ 1

D

D∑
i=1

x2
i

− exp

[
1

D

D∑
i=1

cos (2π · xi)

]
+ 20 + exp (1) . (15.340)

The optimal position is xi = 0 for i = 1, 2, . . . D.
The optimal fitness value is f (x) = 0.

15.2.2 SOALP

Alpine function is a single-objective problem [23]. The problem is scalable in the decision space.
The default number of decision variables is D = 2.

Limits:
xi ∈ 〈−10, 10〉 for i = 1, 2, . . . D, (15.341)

where D means number of decision variables and is arbitrary.
Fitness function:

f (x) =
D∑
i=1

|xi sin (xi) + 0.1xi| . (15.342)

The optimal position is xi = 0 for i = 1, 2, . . . D.
The optimal fitness value is f (x) = 0.

15.2.3 SOBEA

Beale’s function is a single-objective problem with two decision variables [24]. The problem is not
scalable, therefore all input arguments will be ignored.

Limits:
xi ∈ 〈−4.5, 4.5〉 for i = 1, 2. (15.343)

Fitness function:

f (x) = (1.5− x1 + x1x2)2 +
(
2.25− x1 + x1x

2
2

)2
+
(
2.625− x1 + x1x

3
2

)2
. (15.344)

The optimal position is x = [3, 0.5].
The optimal fitness value is f (x) = 0.

15.2.4 SOBOH

Bohachevsky’s function is a single-objective problem with two decision variables [25]. The problem
is not scalable, therefore all input arguments will be ignored.

Limits:
xi ∈ 〈−100, 100〉 for i = 1, 2. (15.345)

Fitness function:

f (x) = x2
1 + 2x2

2 − 0.3 cos (3π · x1)− 0.4 cos (4π · x2) + 0.7. (15.346)

The optimal position is xi = 0 for i = 1, 2.
The optimal fitness value is f (x) = 0.
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15.2.5 SOBOO

Booth’s function is a single-objective problem with two decision variables [25]. The problem is not
scalable, therefore all input arguments will be ignored.

Limits:

xi ∈ 〈−10, 10〉 for i = 1, 2. (15.347)

Fitness function:

f (x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2 . (15.348)

The optimal position is x = [1, 3].

The optimal fitness value is f (x) = 0.

15.2.6 SOCan

This is a simple single-objective constrained optimization problem with two decision variables [2].
It delineates the design of a can where the objective function denotes the surface area of the can,
which should be minimalized, while the constraint function limits the minimal volume of the can.
The problem is not scalable, therefore all input arguments will be ignored.

Limits:

x1 ∈ 〈0, 30〉 cm - is a radius of can, (15.349)

x2 ∈ 〈0, 30〉 cm - is a height of can. (15.350)

Fitness function:

f (x) = 2π · x2
1 + 2π · x1 · x2. (15.351)

Constraint function:

g (x) = π · x2
1 · x2 > 300. (15.352)

The optimal position is x = [3.5, 7.8] cm.

The optimal fitness value is f (x) = 248.5 cm2.

15.2.7 SODCS

Deflected Corrugated Spring function is a single-objective problem. The problem was taken from
[26] and modified to have only one global minimum. The problem is scalable in the decision space.
The default number of decision variables is D = 2.

Limits:

xi ∈ 〈−20, 20〉 for i = 1, 2, . . . D, (15.353)

where D means number of decision variables and is arbitrary.

Fitness function [26]:

f (x) =
1

10

D∑
i=1

(xi − α)2 − cos

k
√√√√ D∑

i=1

(xi − α)2

+
1

10

D∑
i=1

|xi − α| , (15.354)

where α = 5 and k = 5.

The optimal position is xi = α for i = 1, 2, . . . D.

The optimal fitness value is f (x) = −1.
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15.2.8 SODPF

Dixon-Price’s function is a single-objective problem [27]. The problem is scalable in the decision
space. The default number of decision variables is D = 2.

Limits:
xi ∈ 〈−10, 10〉 for i = 1, 2, . . . D, (15.355)

where D means number of decision variables and is arbitrary.
Fitness function:

f (x) = (x1 − 1)2 +
D∑
i=2

i
(
2x2

i − xi−1

)2
. (15.356)

The optimal position is located at

xi = 2−[(2i−2)/2i] for i = 1, 2, . . . D. (15.357)

The optimal fitness value is f (x) = 0.

15.2.9 SOEAS

Easom’s function is a single-objective problem with two decision variables [22]. The problem is not
scalable, therefore all input arguments will be ignored.

Limits:
xi ∈ 〈−100, 100〉 for i = 1, 2. (15.358)

Fitness function:

f (x) = − cos (x1) · cos (x2) · exp
[
− (x1 − π)2 − (x2 − π)2

]
. (15.359)

The optimal position is x = [π, π].
The optimal fitness value is f (x) = −1.

15.2.10 SOGRI

Griewangk’s function is a single-objective problem [22]. The problem is scalable in the decision
space. The default number of decision variables is D = 2.

Limits:
xi ∈ 〈−600, 600〉 for i = 1, 2, . . . D, (15.360)

where D means number of decision variables and is arbitrary.
Fitness function:

f (x) =
1

4000

D∑
i=1

x2
i −

D∏
i=1

cos

(
xi√
i

)
+ 1. (15.361)

The optimal position is xi = 0 for i = 1, 2, . . . D.
The optimal fitness value is f (x) = 0.

15.2.11 SOHUM

Camel function - Six Hump - is a single-objective problem with two decision variables [27]. The
problem is not scalable, therefore all input arguments will be ignored.

Limits:
xi ∈ 〈−5, 5〉 for i = 1, 2. (15.362)

Fitness function:

f (x) = 4x2
1 − 2.1x4

1 +
x6

1

3
+ x1 · x2 + 4x4

2 − 4x2
2 + 1.0316. (15.363)

There are two global minima located at x = [−0.0898, 0.7126] and x = [0.0898, − 0.7126].
The optimal fitness value is f (x) = 0.
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15.2.12 SOLEV

Levy’s function is a single-objective problem [28]. The problem is scalable in the decision space.
The default number of decision variables is D = 2.

Limits:
xi ∈ 〈−10, 10〉 for i = 1, 2, . . . D, (15.364)

where D means number of decision variables and is arbitrary.
Fitness function:

f (x) = sin2 (π · y1) +

{
D−1∑
i=1

(yi − 1)2 ·
[
1 + 10 sin2 (π · yi + 1)

]}
+ (yD − 1)2 ·

[
1 + sin2 (2π · xD)

]
,

(15.365)

yi = 1 +
xi − 1

4
, for i = 1, 2, . . . D. (15.366)

The optimal position is xi = 1 for i = 1, 2, . . . D.
The optimal fitness value is f (x) = 0.

15.2.13 SOMAT

Matyas’s function is a single-objective problem with two decision variables [27]. The problem is
not scalable, therefore all input arguments will be ignored.

Limits:
xi ∈ 〈−10, 10〉 for i = 1, 2. (15.367)

Fitness function:
f (x) = 0.26

(
x2

1 + x2
2

)
− 0.48x1 · x2. (15.368)

The optimal position is x = [0, 0].
The optimal fitness value is f (x) = 0.

15.2.14 SORAS

Rastrigin’s function is a single-objective problem [22]. The problem is scalable in the decision space.
The default number of decision variables is D = 5.

Limits:
xi ∈ 〈−5.12, 5.12〉 for i = 1, 2, . . . D, (15.369)

where D means number of decision variables and is arbitrary.
Fitness function:

f (x) = 10 ·D +

[
D∑
i=1

x2
i − 10 cos (2π · xi)

]
. (15.370)

The optimal position is xi = 0 for i = 1, 2, . . . D.
The optimal fitness value is f (x) = 0.

15.2.15 SOROS

Rosebrock’s function is a single-objective problem [27]. The problem is scalable in the decision
space. The default number of decision variables is D = 2.

Limits:
xi ∈ 〈−30, 30〉 for i = 1, 2, . . . D, (15.371)

where D means number of decision variables and is arbitrary.
Fitness function:

f (x) =

[
D−1∑
i=1

100
(
xi+1 − x2

i

)2
+ (xi − 1)2

]
. (15.372)

The optimal position is xi = 1 for i = 1, 2, . . . D.
The optimal fitness value is f (x) = 0.
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15.2.16 SOSCH

Schwefel’s function is a single-objective problem [22]. The problem is scalable in the decision space.
The default number of decision variables is D = 2.

Limits:
xi ∈ 〈−500, 500〉 for i = 1, 2, . . . D, (15.373)

where D means number of decision variables and is arbitrary.
Fitness function:

f (x) =

[
D∑
i=1

−xi sin
(√
|xi|
)]

. (15.374)

The optimal position is xi = 420.968746 for i = 1, 2, . . . D.
The optimal fitness value is f (x) = −418.9829D.

15.2.17 SOSPH

Sphere function is a single-objective problem [22]. The problem is scalable in the decision space.
The default number of decision variables is D = 2.

Limits:
xi ∈ 〈0, 10〉 for i = 1, 2, . . . D, (15.375)

where D means number of decision variables and is arbitrary.
Fitness function:

f (x) =

D∑
i=0

x2
i . (15.376)

The optimal position is xi = 0 for i = 1, 2, . . . D.
The optimal fitness value is f (x) = 0.
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15.3 Single-objective Variable Number of Dimensions

15.3.1 VNDKDEJ

Modified De Jong’s function is a single-objective problem with the variable number of dimensions
[29].

Limits:

xi ∈ 〈−50, 50〉 for i = 1, 2, . . . D, (15.377)

where D means the number of decision variables and it is varied during an optimization run within
the range of the number of decision variables Drange. By default, Drange ∈ 〈2, 10〉.

Fitness function:

f (x, Dopt) =

(
D∑
i=1

i · x4
i

)
+ (D −Dopt)

4 , (15.378)

where Dopt is the optimal number of decision variables.
The optimal number of decision variables Dopt is the first input argument of the problem

function, therefore it is arbitrary along with the range of the number of decision variables (second
input argument).

By default, the optimal number of decision variables Dopt = 5.
The optimal position is xi = 0 for i = 1, 2, . . . Dopt.
The optimal fitness value is f (x) = 0.

15.3.2 VNDKGIU

Modified Giunta’s function is a single-objective problem with the variable number of dimensions
[29].

Limits:

xi ∈ 〈−500, 500〉 for i = 1, 2, . . . D, (15.379)

where D means the number of decision variables and it is varied during an optimization run within
the range of the number of decision variables Drange. By default, Drange ∈ 〈2, 10〉.

Fitness function:

f (x, Dopt) =

{
D∑
i=1

sin

(
16

15
xi − 1

)
+ sin2

(
16

15
xi − 1

)
+

1

50
sin

[
4

(
16

15
xi − 1

)]
+

268

1000

}
+
√
|D −Dopt|,

(15.380)

where Dopt is the optimal number of decision variables.
The optimal number of decision variables Dopt is the first input argument of problem function,

therefore it is arbitrary along with the range of the number of decision variables (second input
argument).

By default, the optimal number of decision variables Dopt = 5.
The optimal position is xi = 0.46732 for i = 1, 2, . . . Dopt.
The optimal fitness value is f (x) = 0.

15.3.3 VNDKGRI

Modified Griewangk’s function is a single-objective problem with the variable number of dimensions
[29].

Limits:

xi ∈ 〈−500, 500〉 for i = 1, 2, . . . D, (15.381)

where D means the number of decision variables and it is varied during an optimization run within
the range of the number of decision variables Drange. By default, Drange ∈ 〈2, 10〉.
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Fitness function:

f (x, Dopt) =

[
1

4000

D∑
i=1

x2
i −

D∏
i=1

cos

(
xi√
i+ 1

)]
+ 0.2 (D −Dopt)

2 , (15.382)

where Dopt is the optimal number of decision variables.
The optimal number of decision variables Dopt is the first input argument of problem function,

therefore it is arbitrary along with the range of the number of decision variables (second input
argument).

By default, the optimal number of decision variables Dopt = 5.
The optimal position is xi = 0 for i = 1, 2, . . . Dopt.
The optimal fitness value is f (x) = 0.

15.3.4 VNDKRAS

Modified Rastrigin’s function is a single-objective problem with the variable number of dimensions
[29].

Limits:
xi ∈ 〈−50, 50〉 for i = 1, 2, . . . D, (15.383)

where D means the number of decision variables and it is varied during an optimization run within
the range of the number of decision variables Drange. By default, Drange ∈ 〈2, 10〉.

Fitness function:

f (x, Dopt) =

[
D∑
i=1

10 + x2
i − 10 cos (2π · xi)

]
+ (D −Dopt)

4 , (15.384)

where Dopt is the optimal number of decision variables.
The optimal number of decision variables Dopt is the first input argument of problem function,

therefore it is arbitrary along with the range of the number of decision variables (second input
argument).

By default, the optimal number of decision variables Dopt = 5.
The optimal position is xi = 0 for i = 1, 2, . . . Dopt.
The optimal fitness value is f (x) = 0.

15.3.5 VNDKROS

Modified Rosenbrock’s function is a single-objective problem with the variable number of dimensions
[29].

Limits:
xi ∈ 〈−50, 50〉 for i = 1, 2, . . . D, (15.385)

where D means the number of decision variables and it is varied during an optimization run within
the range of the number of decision variables Drange. By default, Drange ∈ 〈2, 10〉.

Fitness function:

f (x, Dopt) =

[
D∑
i=1

100
(
xi+1 − x2

i

)2
+ (xi − 1)2

]
+ (D −Dopt)

4 , (15.386)

where Dopt is the optimal number of decision variables.
The optimal number of decision variables Dopt is the first input argument of problem function,

therefore it is arbitrary along with the range of the number of decision variables (second input
argument).

By default, the optimal number of decision variables Dopt = 5.
The optimal position is xi = 1 for i = 1, 2, . . . Dopt.
The optimal fitness value is f (x) = 0.
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15.3.6 VNDKSCH

Modified Schwevel’s function is a single-objective problem with the variable number of dimensions
[29].

Limits:

xi ∈ 〈−500, 500〉 for i = 1, 2, . . . D, (15.387)

where D means the number of decision variables and it is varied during an optimization run within
the range of the number of decision variables Drange. By default, Drange ∈ 〈2, 10〉.

Fitness function:

f (x, Dopt) =

[
418.9829D +

D∑
i=1

xi sin
(√
|xi|
)]

+ 40 (D −Dopt)
2 , (15.388)

where Dopt is the optimal number of decision variables.
The optimal number of decision variables Dopt is the first input argument of problem function,

therefore it is arbitrary along with the range of the number of decision variables (second input
argument).

By default, the optimal number of decision variables Dopt = 5.
The optimal position is xi = 420.968746 for i = 1, 2, . . . Dopt.
The optimal fitness value is f (x) = 0.

15.3.7 VNDKSPH

Modified Sphere function is a single-objective problem with the variable number of dimensions [29].
Limits:

xi ∈ 〈−150, 150〉 for i = 1, 2, . . . D, (15.389)

where D means the number of decision variables and it is varied during an optimization run within
the range of the number of decision variables Drange. By default, Drange ∈ 〈2, 10〉.

Fitness function:

f (x, Dopt) =

(
D∑
i=1

x2
i

)
+ (D −Dopt)

4 , (15.390)

where Dopt is the optimal number of decision variables.
The optimal number of decision variables Dopt is the first input argument of problem function,

therefore it is arbitrary along with the range of the number of decision variables (second input
argument).

By default, the optimal number of decision variables Dopt = 5.
The optimal position is xi = 0 for i = 1, 2, . . . Dopt.
The optimal fitness value is f (x) = 0.

15.3.8 VNDMACK

Modified Ackley’s function is a single-objective problem with the variable number of dimensions
[30].

Limits:

xi ∈ 〈−32, 32〉 for i = 1, 2, . . . D, (15.391)

where D means the number of decision variables and it is varied during an optimization run within
the range of the number of decision variables Drange. By default, Drange ∈ 〈2, 10〉.

Fitness function:

f (x, Dopt) = 20 (1 + |D −Dopt|) + exp (1)

− 20 exp

−0.2

√√√√ 1

D

D∑
i=1

x2
i

− exp

[
1

D

D∑
i=1

cos (2π · xi)

]
,

(15.392)
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where Dopt is the optimal number of decision variables.
The optimal number of decision variables Dopt is the first input argument of problem function,

therefore it is arbitrary along with the range of the number of decision variables (second input
argument).

By default, the optimal number of decision variables Dopt = 5.
The optimal position is xi = 0 for i = 1, 2, . . . Dopt.
The optimal fitness value is f (x) = 0.

15.3.9 VNDMALP

Modified Alpine function is a single-objective problem with the variable number of dimensions [30].
Limits:

xi ∈ 〈−10, 10〉 for i = 1, 2, . . . D, (15.393)

where D means the number of decision variables and it is varied during an optimization run within
the range of the number of decision variables Drange. By default, Drange ∈ 〈2, 10〉.

Fitness function:

f (x, Dopt) =

∣∣∣∣∣
D∑
i=1

(xi − αi) sin (xi − αi) + 0.1 (xi − αi)

∣∣∣∣∣+ |D −Dopt| , (15.394)

αi (x) = xi,L + (xi,U − xi,L) · 10−
i

D+1 , (15.395)

where Dopt is the optimal number of decision variables, xi,L and xi,U denotes lower and upper limits
of i-th decision, respectively.

The optimal number of decision variables Dopt is the first input argument of problem function,
therefore it is arbitrary along with the range of the number of decision variables (second input
argument).

By default, the optimal number of decision variables Dopt = 5.
The optimal position is xi = αi for i = 1, 2, . . . Dopt.
The optimal fitness value is f (x) = 0.

15.3.10 VNDMDCS

Modified Deflected Corrugated Spring function is a single-objective problem with the variable
number of dimensions [30].

Limits:
xi ∈ 〈0, 10〉 for i = 1, 2, . . . D, (15.396)

where D means the number of decision variables and it is varied during an optimization run within
the range of the number of decision variables Drange. By default, Drange ∈ 〈2, 10〉.

Fitness function:

f (x, Dopt) = 1 +
1

D


D∑
i=1

(xi − αi)2 + 10

√√√√ D∑
i=1

(xi − αi)2 − cos

[
π |D −Dopt|

(
1

4
+

37

79

)] ,

(15.397)

αi (x) =
i · (xi,U − xi,L)

D + 1
, (15.398)

where Dopt is the optimal number of decision variables, xi,L and xi,U denotes lower and upper limits
of i-th decision, respectively.

The optimal number of decision variables Dopt is the first input argument of problem function,
therefore it is arbitrary along with the range of the number of decision variables (second input
argument).

By default, the optimal number of decision variables Dopt = 5.
The optimal position is xi = αi for i = 1, 2, . . . Dopt.
The optimal fitness value is f (x) = 0.
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15.3.11 VNDMDPF

Modified Dixon-Price’s function is a single-objective problem with the variable number of dimen-
sions [30].

Limits:
xi ∈ 〈−10, 10〉 for i = 1, 2, . . . D, (15.399)

where D means the number of decision variables and it is varied during an optimization run within
the range of the number of decision variables Drange. By default, Drange ∈ 〈2, 10〉.

Fitness function:

f (x, Dopt) = (D −Dopt)
2 + (x1 − 1)2 +

(
D∑
i=2

2x2
i − 2x2

i−1

)
, (15.400)

where Dopt is the optimal number of decision variables.
The optimal number of decision variables Dopt is the first input argument of problem function,

therefore it is arbitrary along with the range of the number of decision variables (second input
argument).

By default, the optimal number of decision variables Dopt = 5.
The optimal position:

xi = 2−
2i−2

2i for i = 1, 2, . . . Dopt. (15.401)

The optimal fitness value is f (x) = 0.

15.3.12 VNDMMIC

Modified Michalewicz’s function is a single-objective problem with the variable number of dimen-
sions [30].

Limits:
xi ∈ 〈0, π〉 for i = 1, 2, . . . D, (15.402)

where D means the number of decision variables and it is varied during an optimization run within
the range of the number of decision variables Drange. By default, Drange ∈ 〈2, 10〉.

Fitness function:

f (x, Dopt) = −10

[
D∑
i=1

sin (xi) · sin20

(
i · x2

i

π

)]
+
∣∣∣(D −Dopt + 2)3

∣∣∣ , (15.403)

where Dopt is the optimal number of decision variables.
The optimal number of decision variables Dopt is the first input argument of problem function,

therefore it is arbitrary along with the range of the number of decision variables (second input
argument).

By default, the optimal number of decision variables Dopt = 5.
The optimal positions and fitness values can be found in [30].

15.3.13 VNDMMUM

Modified Modified Multimodal function is a single-objective problem with variable number of
dimensions [30].

Limits:
xi ∈ 〈−10, 10〉 for i = 1, 2, . . . D, (15.404)

where D means the number of decision variables and it is varied during an optimization run within
the range of the number of decision variables Drange. By default, Drange ∈ 〈2, 10〉.

Fitness function:

f (x, Dopt) =

(
D∑
i=1

|xi|+ |D −Dopt|

)
·

(
D∏
i=1

|xi|+
10

D
|D −Dopt|

)
, (15.405)
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where Dopt is the optimal number of decision variables.

The optimal number of decision variables Dopt is the first input argument of problem function,
therefore it is arbitrary along with the range of the number of decision variables (second input
argument).

By default, the optimal number of decision variables Dopt = 5.

The optimal position is xi = 0 for i = 1, 2, . . . Dopt.

The optimal fitness value is f (x) = 0.

15.3.14 VNDMRAS

Modified Rastrigin’s function is a single-objective problem with the variable number of dimensions
[30].

Limits:

xi ∈ 〈−5.12, 5.12〉 for i = 1, 2, . . . D, (15.406)

where D means the number of decision variables and it is varied during an optimization run within
the range of the number of decision variables Drange. By default, Drange ∈ 〈2, 10〉.

Fitness function:

f (x, Dopt) = 10 ·D [(D −Dopt) + 1] +

[
D∑
i=1

x2
i − 10 cos (2π · xi)

]
, (15.407)

where Dopt is the optimal number of decision variables.

The optimal number of decision variables Dopt is the first input argument of problem function,
therefore it is arbitrary along with the range of the number of decision variables (second input
argument).

By default, the optimal number of decision variables Dopt = 5.

The optimal position is xi = 0 for i = 1, 2, . . . Dopt.

The optimal fitness value is f (x) = 0.

15.3.15 VNDSPH1

Modified Sphere 1 function is a single-objective problem with the variable number of dimensions
[30].

Limits:

xi ∈ 〈−10, 10〉 for i = 1, 2, . . . D, (15.408)

where D means the number of decision variables and it is varied during an optimization run within
the range of the number of decision variables Drange. By default, Drange ∈ 〈2, 10〉.

Fitness function:

f (x, Dopt) =

(
D∑
i=1

x2
i

)
+ 10 (D −Dopt)

2 , (15.409)

where Dopt is the optimal number of decision variables.

The optimal number of decision variables Dopt is the first input argument of problem function,
therefore it is arbitrary along with the range of the number of decision variables (second input
argument).

By default, the optimal number of decision variables Dopt = 5.

The optimal position is xi = 0 for i = 1, 2, . . . Dopt.

The optimal fitness value is f (x) = 0.

15.3.16 VNDSPH2

Modified Sphere 2 function is a single-objective problem with the variable number of dimensions
[30].
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Limits:
xi ∈ 〈−10, 10〉 for i = 1, 2, . . . D, (15.410)

where D means the number of decision variables and it is varied during an optimization run within
the range of the number of decision variables Drange. By default, Drange ∈ 〈2, 10〉.

Fitness function:

f (x, Dopt) =

[
D∑
i=1

(xi −Dopt)
2 + |xi| (D −Dopt)

2

]
, (15.411)

where Dopt is the optimal number of decision variables.
The optimal number of decision variables Dopt is the first input argument of problem function,

therefore it is arbitrary along with the range of the number of decision variables (second input
argument).

By default, the optimal number of decision variables Dopt = 5.
The optimal position:

xi = Dopt (D + 1)− 1

2

(
D2 +D2

opt

)
for i = 1, 2, . . . Dopt. (15.412)

The optimal fitness value is f (x) = 0.
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15.4 Multi-objective Variable Number of Dimensions

Multi-objective problems with Variable Number of Dimensions are based on a well known multi-
objective benchmark problems. True Pareto-front of multi-objective problems is constituted by
numerous solutions. Therefore, it is necessary to ensure, that a proper multi-objective problem
with variable number of dimensions has also true Pareto-front constituted of solution with varying
optimal dimensionalities. Such a difficulty leads to a complexity which is insoluble with common
multi-objective algorithms.

The modifications of all the VNDMO problems in FOPS is based on methodology proposed in
[31]. Methodology is described for both two and three objective test problems. Therefore, the FOPS
contains two methods getNOpt and getNOpt3D. These methods returns the optimal dimensionality
of a solution based on an angle between solution in objective space and the center of carthesian
system.

Both methods has input arguments nOptList, nParts and order. The Pareto-front is divided
into nParts parts, where all the dimensionalities listed in nOptList are covered either in ascending
order (order is disabled) or in descending order (proporder is enabled).

If properties nParts and order are not specified in a problem definition, the nParts = 1 and
order = false.

15.4.1 VNDMODTLZ1

This is the modified first benchmark problem from Deb et al.’s test suite [18]. The problem is
scalable in decision space. The number of decision variables is defined by nVarsList property of
problem. Optimal number of dimensions is defined by nOptList parameter along with nParts and
order properties.

Limits:

xi ∈ 〈0, 1〉 for i = 1, 2, . . . D, (15.413)

where D denotes the number of decision variables and it is arbitrary.

Fitness functions:

f1 (x) = [1 + h (xM :D)] 0.5x1 · x2 + P, (15.414)

f2 (x) = [1 + h (xM :D)] 0.5x1 (1− x2) + P, (15.415)

f3 (x) = [1 + h (xM :D)] 0.5 (1− x1) + P, (15.416)

h (z) = 100

{
k +

[
k∑
i=1

(zi − 0.5)2 − 5 cos (20π (zi − 0.5))

]}
, (15.417)

P = 0.50 (D −Dopt)
2 (15.418)

where k = D −M + 1, M is the number of objectives and Dopt is optimal dimension of a solution
obtained by the getOptN3D function.

Optimal solutions corresponds to x1 ∈ 〈0, 1〉, x2 ∈ 〈0, 1〉 and z = 0.5, where z = x3, x4, . . . xD.
Optimal positions and fitness values are calculated during the problem initialization.

15.4.2 VNDMODTLZ2

This is the modified second benchmark problem from Deb et al.’s test suite [18]. The problem is
scalable in decision space. The number of decision variables is defined by nVarsList property of
problem. Optimal number of dimensions is defined by nOptList parameter along with nParts and
order properties.

Limits:

xi ∈ 〈0, 1〉 for i = 1, 2, . . . D, (15.419)

where D denotes the number of decision variables and it is arbitrary.
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Fitness functions:

f1 (x) = [1 + h (xM :D)] cos (x1π/2) cos (x2π/2) + P, (15.420)

f2 (x) = [1 + h (xM :D)] cos (x1π/2) sin (x2π/2) + P, (15.421)

f3 (x) = [1 + h (xM :D)] sin (x1π/2) + P, (15.422)

h (z) =
k∑
i=1

(zi − 0.5)2 , (15.423)

P = 0.05 (D −Dopt)
2 (15.424)

where k = D −M + 1, M is the number of objectives and Dopt is optimal dimension of a solution
obtained by the getOptN3D function.

Optimal solutions corresponds to x1 ∈ 〈0, 1〉, x2 ∈ 〈0, 1〉 and z = 0.5, where z = x3, x4, . . . xD.
Optimal positions and fitness values are calculated during the problem initialization.

15.4.3 VNDMODTLZ3

This is the modified third benchmark problem from Deb et al.’s test suite [18]. The problem is
scalable in decision space. The number of decision variables is defined by nVarsList property of
problem. Optimal number of dimensions is defined by nOptList parameter along with nParts and
order properties.

Limits:

xi ∈ 〈0, 1〉 for i = 1, 2, . . . D, (15.425)

where D denotes the number of decision variables and it is arbitrary.

Fitness functions:

f1 (x) = [1 + h (xM :D)] cos (x1π/2) cos (x2π/2) + P, (15.426)

f2 (x) = [1 + h (xM :D)] cos (x1π/2) sin (x2π/2) + P, (15.427)

f3 (x) = [1 + h (xM :D)] sin (x1π/2) + P, (15.428)

h (z) = 100

{
k +

[
k∑
i=1

(zi − 0.5)2 − 5 cos (20π (zi − 0.5))

]}
, (15.429)

P = 0.80 (D −Dopt)
2 (15.430)

where k = D −M + 1, M is the number of objectives and Dopt is optimal dimension of a solution
obtained by the getOptN3D function.

Optimal solutions corresponds to x1 ∈ 〈0, 1〉, x2 ∈ 〈0, 1〉 and z = 0.5, where z = x3, x4, . . . xD.
Optimal positions and fitness values are calculated during the problem initialization.

15.4.4 VNDMODTLZ4

This is the modified fourth benchmark problem from Deb et al.’s test suite [18]. The problem is
scalable in decision space. The number of decision variables is defined by nVarsList property of
problem. Optimal number of dimensions is defined by nOptList parameter along with nParts and
order properties.

Limits:

xi ∈ 〈0, 1〉 for i = 1, 2, . . . D, (15.431)

where D denotes the number of decision variables and it is arbitrary.
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Fitness functions:

f1 (x) = [1 + h (xM :D)] cos (xα1π/2) cos (xα2π/2) + P, (15.432)

f2 (x) = [1 + h (xM :D)] cos (xα1π/2) sin (xα2π/2) + P, (15.433)

f3 (x) = [1 + h (xM :D)] sin (xα1π/2) + P, (15.434)

h (z) =
k∑
i=1

(zi − 0.5)2 , (15.435)

P = 0.05 (D −Dopt)
2 (15.436)

where parameter α = 100, k = D −M + 1, M is the number of objectives and Dopt is optimal
dimension of a solution obtained by the getOptN3D function.

Optimal solutions corresponds to x1 ∈ 〈0, 1〉, x2 ∈ 〈0, 1〉 and z = 0.5, where z = x3, x4, . . . xD.
Optimal positions and fitness values are calculated during the problem initialization.

15.4.5 VNDMODTLZ5

This is the modified fifth benchmark problem from Deb et al.’s test suite [18]. The problem is
scalable in decision space. The number of decision variables is defined by nVarsList property of
problem. Optimal number of dimensions is defined by nOptList parameter along with nParts and
order properties.

Limits:

xi ∈ 〈0, 1〉 for i = 1, 2, . . . D, (15.437)

where D denotes the number of decision variables and it is arbitrary.

Fitness functions:

f1 (x) = [1 + h (xM :D)] cos (θ1π/2) cos (θ2π/2) + P, (15.438)

f2 (x) = [1 + h (xM :D)] cos (θ1π/2) sin (θ2π/2) + P, (15.439)

f3 (x) = [1 + h (xM :D)] sin (θ1π/2) + P, (15.440)

h (z) =
k∑
i=1

(zi − 0.5)2 , (15.441)

θi =


xi for i = 1,

1+2h·xi
2(1+h) for i = 2, 3, ... (M − 1) ,

(15.442)

P = 0.05 (D −Dopt)
2 (15.443)

where k = D −M + 1, M is the number of objectives and Dopt is optimal dimension of a solution
obtained by the getOptN3D function.

Optimal solutions corresponds to x1 ∈ 〈0, 1〉, x2 ∈ 〈0, 1〉 and z = 0.5, where z = x3, x4, . . . xD.
Optimal positions and fitness values are calculated during the problem initialization.

15.4.6 VNDMODTLZ6

This is the modified sixth benchmark problem from Deb et al.’s test suite [18]. The problem is
scalable in decision space. The number of decision variables is defined by nVarsList property of
problem. Optimal number of dimensions is defined by nOptList parameter along with nParts and
order properties.

Limits:

xi ∈ 〈0, 1〉 for i = 1, 2, . . . D, (15.444)

where D denotes the number of decision variables and it is arbitrary.
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Fitness functions:

f1 (x) = [1 + h (xM :D)] cos (θ1π/2) cos (θ2π/2) + P, (15.445)

f2 (x) = [1 + h (xM :D)] cos (θ1π/2) sin (θ2π/2) + P, (15.446)

f3 (x) = [1 + h (xM :D)] sin (θ1π/2) + P, (15.447)

h (z) =

k∑
i=1

z0.1
i , (15.448)

θi =


xi for i = 1,

1+2h·xi
2(1+h) for i = 2, 3, ... (M − 1) ,

(15.449)

P = 0.08 (D −Dopt)
2 (15.450)

where k = D −M + 1, M is the number of objectives and Dopt is optimal dimension of a solution
obtained by the getOptN3D function.

Optimal solutions corresponds to x1 ∈ 〈0, 1〉, x2 ∈ 〈0, 1〉 and z = 0.5, where z = x3, x4, . . . xD.
Optimal positions and fitness values are calculated during the problem initialization.

15.4.7 VNDMODTLZ7

This is the modified seventh benchmark problem from Deb et al.’s test suite [18]. The problem is
scalable in decision space. The number of decision variables is defined by nVarsList property of
problem. Optimal number of dimensions is defined by nOptList parameter along with nParts and
order properties.

Limits:

xi ∈ 〈0, 1〉 for i = 1, 2, . . . D, (15.451)

where D denotes the number of decision variables and it is arbitrary.

Fitness functions:

f1 (x) = x1 + P, (15.452)

f2 (x) = x2 + P, (15.453)

f3 (x) = [1 + h (xM :D)]

{
M −

M−1∑
i=1

[
fi

1 + h (xM :D)
(1 + sin (3π · fi))

]}
+ P, (15.454)

h (z) = 1 +
9

k

k∑
i=1

zi, (15.455)

P = 0.30 (D −Dopt)
2 (15.456)

where k = D −M + 1, M is the number of objectives and Dopt is optimal dimension of a solution
obtained by the getOptN3D function.

Optimal solutions corresponds to x1 ∈ 〈0, 1〉, x2 ∈ 〈0, 1〉 and z = 0.5, where z = x3, x4, . . . xD.
Optimal positions and fitness values are calculated during the problem initialization.

15.4.8 VNDMOLI1

This is the benchmark problem from [31]. The problem is scalable in decision space. The number
of decision variables is defined by nVarsList property of problem. Optimal number of dimensions
is defined by nOptList parameter along with nParts and order properties.

Limits:

xi ∈ 〈0, 1〉 for i = 1, 2, . . . D, (15.457)

where D denotes the number of decision variables and it is arbitrary.
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Fitness functions:

f1 (x) = x1 + h (x2:D) , (15.458)

f2 (x) = 1− x1 + h (x2:D) + P, (15.459)

h (z) =

k∑
i=1

[
zi − sin

(
Dopt

2D
π

)]2

, (15.460)

P = 0.01 (D −Dopt)
2 (15.461)

where k = D − 1 and Dopt is optimal dimension of a solution obtained by the getOptN function.

Optimal solutions corresponds to x1 ∈ 〈0, 1〉 and xj = sin
(
Dopt

2D π
)

, where j = 1, 2, . . . , xD.

Optimal positions and fitness values are calculated during the problem initialization.

15.4.9 VNDMOLI2

This is the benchmark problem from [31]. The problem is scalable in decision space. The number
of decision variables is defined by nVarsList property of problem. Optimal number of dimensions
is defined by nOptList parameter along with nParts and order properties.

Limits:

xi ∈ 〈0, 1〉 for i = 1, 2, . . . D, (15.462)

where D denotes the number of decision variables and it is arbitrary.
Fitness functions:

f1 (x) = x1 + h (x2:D) , (15.463)

f2 (x) = 1− x1 + h (x2:D) + P, (15.464)

h (z) =

k∑
i=1

[
zi − sin

(
Dopt

2D
π

)]2

, (15.465)

P = 0.01 (D −Dopt)
2 (15.466)

where k = D − 1 and Dopt is optimal dimension of a solution obtained by the getOptN function.
In this case the nParts = 2 and order = [false, true].

Optimal solutions corresponds to x1 ∈ 〈0, 1〉 and xj = sin
(
Dopt

2D π
)

, where j = 1, 2, . . . , xD.

Optimal positions and fitness values are calculated during the problem initialization.

15.4.10 VNDMOLI3

This is the benchmark problem from [31]. The problem is scalable in decision space. The number
of decision variables is defined by nVarsList property of problem. Optimal number of dimensions
is defined by nOptList parameter along with nParts and order properties.

Limits:

xi ∈ 〈0, 1〉 for i = 1, 2, . . . D, (15.467)

where D denotes the number of decision variables and it is arbitrary.
Fitness functions:

f1 (x) = h (x3:D)x1 (1− x2) + P, (15.468)

f2 (x) = h (x3:D)x1x2 + P, (15.469)

f3 (x) = h (x3:D) (1− x1) + P, (15.470)

h (z) =

k∑
i=1

z2
i , (15.471)

P = 0.01 (D −Dopt)
2 (15.472)
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where k = D− 2 and Dopt is optimal dimension of a solution obtained by the getOptN3D function.
Optimal solutions corresponds to x1 ∈ 〈0, 1〉, x2 ∈ 〈0, 1〉 and z = 0, where z = x3, x4, . . . xD.

Optimal positions and fitness values are calculated during the problem initialization.

15.4.11 VNDMOLZ1

This is the modified first benchmark problem from Li and Zhang’s test suite [19]. The problem is
scalable in decision space. The number of decision variables is defined by nVarsList property of
problem. Optimal number of dimensions is defined by nOptList parameter along with nParts and
order properties.

Limits:
xi ∈ 〈0, 1〉 for i = 1, 2, . . . D, (15.473)

where D denotes the number of decision variables and it is arbitrary.
Fitness functions:

f1 (x) = x1 +
2

|J1|
∑
j∈J1

[xj − h (j, x1)]2 , (15.474)

f2 (x) = 1−
√
x1 +

2

|J2|
∑
j∈J2

[xj − h (j, x1)]2 + P, (15.475)

h (j) = x
0.5(1+ 3j−6

D−2 )
1 for j = 1, 2, . . . D, (15.476)

J1 = 3, 5, . . . D, (15.477)

J2 = 2, 4, . . . D, (15.478)

P = 0.05 (D −Dopt)
2 , (15.479)

where Dopt is optimal dimension of a solution obtained by the getOptN function.
Optimal solutions corresponds to xj = h (j), where j = 2, 3, . . . D. Optimal positions and fitness

values are calculated during the problem initialization.

15.4.12 VNDMOLZ2

This is the modified second benchmark problem from Li and Zhang’s test suite [19]. The problem
is scalable in decision space. The number of decision variables is defined by nVarsList property
of problem. Optimal number of dimensions is defined by nOptList parameter along with nParts

and order properties.
Limits:

x1 ∈ 〈0, 1〉 , (15.480)

xi ∈ 〈−1, 1〉 for i = 2, 3, . . . D, (15.481)

where D denotes the number of decision variables and it is arbitrary.
Fitness functions:

f1 (x) = x1 +
2

|J1|
∑
j∈J1

[xj − h (j, x1)]2 , (15.482)

f2 (x) = 1−
√
x1 +

2

|J2|
∑
j∈J2

[xj − h (j, x1)]2 + P, (15.483)

h (j) = sin

(
6πx1 +

jπ

D

)
for j = 1, 2, . . . D, (15.484)

J1 = 3, 5, . . . D, (15.485)

J2 = 2, 4, . . . D, (15.486)

P = 0.06 (D −Dopt)
2 , (15.487)
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where Dopt is optimal dimension of a solution obtained by the getOptN function.

Optimal solutions corresponds to xj = h (j), where j = 2, 3, . . . D. Optimal positions and fitness
values are calculated during the problem initialization.

15.4.13 VNDMOLZ3

This is the modified third benchmark problem from Li and Zhang’s test suite [19]. The problem
is scalable in decision space. The number of decision variables is defined by nVarsList property
of problem. Optimal number of dimensions is defined by nOptList parameter along with nParts

and order properties.

Limits:

x1 ∈ 〈0, 1〉 , (15.488)

xi ∈ 〈−1, 1〉 for i = 2, 3, . . . D, (15.489)

where D denotes the number of decision variables and it is arbitrary.

Fitness functions:

f1 (x) = x1 +
2

|J1|
∑
j∈J1

[xj − h1 (j, x1)]2 , (15.490)

f2 (x) = 1−
√
x1 +

2

|J2|
∑
j∈J2

[xj − h2 (j, x1)]2 + P, (15.491)

h1 (j) = 0.8x1 cos

(
6πx1 +

jπ

D

)
for j = 1, 2, . . . D, (15.492)

h2 (j) = 0.8x1 sin

(
6πx1 +

jπ

D

)
for j = 1, 2, . . . D, (15.493)

J1 = 3, 5, . . . D, (15.494)

J2 = 2, 4, . . . D, (15.495)

P = 0.06 (D −Dopt)
2 , (15.496)

where Dopt is optimal dimension of a solution obtained by the getOptN function.

Optimal solutions corresponds to:

xj =

{
h1 (j) where j ∈ J1,

h2 (j) where j ∈ J2.
(15.497)

Optimal positions and fitness values are calculated during the problem initialization.

15.4.14 VNDMOLZ4

This is the modified fourth benchmark problem from Li and Zhang’s test suite [19]. The problem
is scalable in decision space. The number of decision variables is defined by nVarsList property
of problem. Optimal number of dimensions is defined by nOptList parameter along with nParts

and order properties.

Limits:

x1 ∈ 〈0, 1〉 , (15.498)

xi ∈ 〈−1, 1〉 for i = 2, 3, . . . D, (15.499)

where D denotes the number of decision variables and it is arbitrary.
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Fitness functions:

f1 (x) = x1 +
2

|J1|
∑
j∈J1

[xj − h1 (j, x1)]2 , (15.500)

f2 (x) = 1−
√
x1 +

2

|J2|
∑
j∈J2

[xj − h2 (j, x1)]2 + P, (15.501)

h1 (j) = 0.8x1 cos

(
6πx1 + jπ

D

3

)
for j = 1, 2, . . . D, (15.502)

h2 (j) = 0.8x1 sin

(
6πx1 +

jπ

D

)
for j = 1, 2, . . . D, (15.503)

J1 = 3, 5, . . . D, (15.504)

J2 = 2, 4, . . . D, (15.505)

P = 0.05 (D −Dopt)
2 , (15.506)

where Dopt is optimal dimension of a solution obtained by the getOptN function.
Optimal solutions corresponds to:

xj =

{
h1 (j) for j ∈ J1,

h2 (j) for j ∈ J2.
(15.507)

Optimal positions and fitness values are calculated during the problem initialization.

15.4.15 VNDMOLZ5

This is the modified fifth benchmark problem from Li and Zhang’s test suite [19]. The problem is
scalable in decision space. The number of decision variables is defined by nVarsList property of
problem. Optimal number of dimensions is defined by nOptList parameter along with nParts and
order properties.

Limits:

x1 ∈ 〈0, 1〉 , (15.508)

xi ∈ 〈−1, 1〉 for i = 2, 3, . . . D, (15.509)

where D denotes the number of decision variables and it is arbitrary.
Fitness functions:

f1 (x) = x1 +
2

|J1|
∑
j∈J1

[xj − h1 (j, x1)]2 , (15.510)

f2 (x) = 1−
√
x1 +

2

|J2|
∑
j∈J2

[xj − h2 (j, x1)]2 + P, (15.511)

h1 (j) =

[
0.3x2

1 cos

(
24πx1 +

4jπ

D

)
+ 0.6x1

]
cos

(
6πx1 +

jπ

D

)
for j = 1, 2, . . . D, (15.512)

h2 (j) =

[
0.3x2

1 cos

(
24πx1 +

4jπ

D

)
+ 0.6x1

]
sin

(
6πx1 +

jπ

D

)
for j = 1, 2, . . . D, (15.513)

J1 = 3, 5, . . . D, (15.514)

J2 = 2, 4, . . . D, (15.515)

P = 0.05 (D −Dopt)
2 , (15.516)

where Dopt is optimal dimension of a solution obtained by the getOptN function.
Optimal solutions corresponds to:

xj =

{
h1 (j) for j ∈ J1,

h2 (j) for j ∈ J2.
(15.517)

Optimal positions and fitness values are calculated during the problem initialization.
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15.4.16 VNDMOLZ6

This is the modified sixth benchmark problem from Li and Zhang’s test suite [19]. The problem
is scalable in decision space. The number of decision variables is defined by nVarsList property
of problem. Optimal number of dimensions is defined by nOptList parameter along with nParts

and order properties.

Limits:

x1 ∈ 〈0, 1〉 , (15.518)

x2 ∈ 〈0, 1〉 , (15.519)

xi ∈ 〈−2, 2〉 for i = 3, 4, . . . D, (15.520)

where D denotes the number of decision variables and it is arbitrary.

Fitness functions:

f1 (x) = cos (0.5x1π) cos (0.5x2π) +
2

|J1|
∑
j∈J1

[xj − h (j, x1, x2)]2 + P, (15.521)

f2 (x) = cos (0.5x1π) sin (0.5x2π) +
2

|J2|
∑
j∈J2

[xj − h (j, x1, x2)]2 + P, (15.522)

f3 (x) = sin (0.5x1π) +
2

|J3|
∑
j∈J3

[xj − h (j, x1, x2)]2 + P, (15.523)

h (j) = 2x2 sin

(
2πx1 +

jπ

D

)
, for j = 1, 2, . . . D, (15.524)

J1 = 4, 7, . . . D, (15.525)

J2 = 5, 8, . . . D, (15.526)

J3 = 3, 6, . . . D, (15.527)

P = 0.12 (D −Dopt)
2 , (15.528)

where Dopt is optimal dimension of a solution obtained by the getOptN3D function.

Optimal solutions corresponds to xj = h (j), where j = 3, 4, . . . D. Optimal positions and fitness
values are calculated during the problem initialization.

15.4.17 VNDMOLZ7

This is the modified seventh benchmark problem from Li and Zhang’s test suite [19]. The problem
is scalable in decision space. The number of decision variables is defined by nVarsList property
of problem. Optimal number of dimensions is defined by nOptList parameter along with nParts

and order properties.

Limits:

xi ∈ 〈0, 1〉 for i = 1, 2, . . . D, (15.529)

where D denotes the number of decision variables and it is arbitrary.
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Fitness functions:

f1 (x) = x1+
2

|J1|
∑
j∈J1

[
4y2
j − cos (8yjπ) + 1

]
, (15.530)

f2 (x) = 1−
√
x1+

2

|J2|
∑
j∈J2

[
4y2
j − cos (8yjπ) + 1

]
+ P, (15.531)

yj = xj − h (j) for j = 2, 3, . . . D, (15.532)

h (j) = x
0.5(1+ 3j−6

D−2 )
1 for j = 1, 2, . . . D, (15.533)

J1 = 3, 5, . . . D, (15.534)

J2 = 2, 4, . . . D, (15.535)

P = 0.10 (D −Dopt)
2 , (15.536)

where Dopt is optimal dimension of a solution obtained by the getOptN function.

Optimal solutions corresponds to xj = h (j), where j = 2, 3, . . . D. Optimal positions and fitness
values are calculated during the problem initialization.

15.4.18 VNDMOLZ8

This is the modified eighth benchmark problem from Li and Zhang’s test suite [19]. The problem
is scalable in decision space. The number of decision variables is defined by nVarsList property
of problem. Optimal number of dimensions is defined by nOptList parameter along with nParts

and order properties.

Limits:

xi ∈ 〈0, 1〉 for i = 1, 2, . . . D, (15.537)

where D denotes the number of decision variables and it is arbitrary.

Fitness functions:

f1 (x) = x1+
2

|J1|

4
∑
j∈J1

y2
j − 2

∏
j∈J1

cos

(
20yjπ√

j

)
+ 2

 , (15.538)

f2 (x) = 1−
√
x1+

2

|J2|

4
∑
j∈J2

y2
j − 2

∏
j∈J2

cos

(
20yjπ√

j

)
+ 2

+ P, (15.539)

yj = xj − h (j) for j = 2, 3, . . . D, (15.540)

h (j) = x
0.5(1+ 3j−6

D−2 )
1 for j = 1, 2, . . . D, (15.541)

J1 = 3, 5, . . . D, (15.542)

J2 = 2, 4, . . . D, (15.543)

P = 0.35 (D −Dopt)
2 , (15.544)

where Dopt is optimal dimension of a solution obtained by the getOptN function.

Optimal solutions corresponds to xj = h (j), where j = 2, 3, . . . D. Optimal positions and fitness
values are calculated during the problem initialization.

15.4.19 VNDMOLZ9

This is the modified ninth benchmark problem from Li and Zhang’s test suite [19]. The problem
is scalable in decision space. The number of decision variables is defined by nVarsList property
of problem. Optimal number of dimensions is defined by nOptList parameter along with nParts

and order properties.
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Limits:

x1 ∈ 〈0, 1〉 , (15.545)

xi ∈ 〈−1, 1〉 for i = 2, 3, . . . D, (15.546)

where D denotes the number of decision variables and it is arbitrary.

Fitness functions:

f1 (x) = x1 +
2

|J1|
∑
j∈J1

[xj − h (j, x1)]2 , (15.547)

f2 (x) = 1− x2
1 +

2

|J2|
∑
j∈J2

[xj − h (j, x1)]2 + P, (15.548)

h (j) = sin

(
6πx1 +

jπ

D

)
for j = 1, 2, . . . D, (15.549)

J1 = 3, 5, . . . D, (15.550)

J2 = 2, 4, . . . D, (15.551)

P = 0.06 (D −Dopt)
2 , (15.552)

where Dopt is optimal dimension of a solution obtained by the getOptN function.

Optimal solutions corresponds to xj = h (j), where j = 2, 3, . . . D. Optimal positions and fitness
values are calculated during the problem initialization.

15.4.20 VNDMOUF4

This is the modified fourth benchmark problem of test instances for the CEC 2009 [20]. The
problem is scalable in decision space. The number of decision variables is defined by nVarsList

property of problem. Optimal number of dimensions is defined by nOptList parameter along with
nParts and order properties.

Limits:

x1 ∈ 〈0, 1〉 , (15.553)

xi ∈ 〈−2, 2〉 for i = 2, 3, . . . D, (15.554)

where D denotes the number of decision variables and it is arbitrary.

Fitness functions:

f1 (x) = x1 +
2

|J1|
∑
j∈J1

h (yj) , (15.555)

f2 (x) = 1− x2
1 +

2

|J2|
∑
j∈J2

h (yj) + P, (15.556)

yj = xj − sin

(
6πx1 +

jπ

D

)
for j = 1, 2, . . . D, (15.557)

h (y) =
|y|

1 + exp (2 |y|)
, (15.558)

J1 = 3, 5, . . . D, (15.559)

J2 = 2, 4, . . . D, (15.560)

P = 0.05 (D −Dopt)
2 , (15.561)

where Dopt is optimal dimension of a solution obtained by the getOptN function.

Optimal solutions corresponds to xj = sin
(

6πx1 + jπ
D

)
, where j = 2, 3, . . . D. Optimal positions

and fitness values are calculated during the problem initialization.
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15.4.21 VNDMOUF5

This is the modified fifth benchmark problem of test instances for the CEC 2009 [20]. The problem
is scalable in decision space. The number of decision variables is defined by nVarsList property
of problem. Optimal number of dimensions is defined by nOptList parameter along with nParts

and order properties.
Limits:

x1 ∈ 〈0, 1〉 , (15.562)

xi ∈ 〈−1, 1〉 for i = 2, 3, . . . D, (15.563)

where D denotes the number of decision variables and it is arbitrary.
Fitness functions:

f1 (x) = x1+

(
1

2N + ε

)
|sin (2Nπx1)|+ 2

|J1|
∑
j∈J1

h (yj) , (15.564)

f2 (x) = 1− x1+

(
1

2N + ε

)
|sin (2Nπx1)|+ 2

|J2|
∑
j∈J2

h (yj) + P, (15.565)

yj = xj − sin

(
6πx1 +

jπ

D

)
for j = 1, 2, . . . D, (15.566)

h (y) = 2y2 − cos (4πy) + 1, (15.567)

J1 = 3, 5, . . . D, (15.568)

J2 = 2, 4, . . . D, (15.569)

P = 0.15 (D −Dopt)
2 , (15.570)

where Dopt is optimal dimension of a solution obtained by the getOptN function. Variable N is an
integer and it defines the number of the solutions of the true Pareto-front. The variable was set to
N = 10, therefore the true Pareto-front has 2N +1 = 21 solutions. Constant ε > 0 is set to ε = 0.1.

Optimal solutions corresponds to xj = sin
(

6πx1 + jπ
D

)
, where j = 2, 3, . . . D. Optimal positions

and fitness values are calculated during the problem initialization.

15.4.22 VNDMOUF6

This is the modified sixth benchmark problem of test instances for the CEC 2009 [20]. The problem
is scalable in decision space. The number of decision variables is defined by nVarsList property
of problem. Optimal number of dimensions is defined by nOptList parameter along with nParts

and order properties.
Limits:

x1 ∈ 〈0, 1〉 , (15.571)

xi ∈ 〈−1, 1〉 for i = 2, 3, . . . D, (15.572)

where D denotes the number of decision variables and it is arbitrary.
Fitness functions:

f1 (x) = x1+ max

{
0, 2

(
1

2N
+ ε

)
sin (2Nπx1)

}
+ (15.573)

2

|J1|

4
∑
j∈J1

y2
j − 2

∏
j∈J1

cos

(
20yjπ√

j

)
+ 2

 ,
f2 (x) = 1− x1+ max

{
0, 2

(
1

2N
+ ε

)
sin (2Nπx1)

}
+ (15.574)

2

|J2|

4
∑
j∈J2

y2
j − 2

∏
j∈J2

cos

(
20yjπ√

j

)
+ 2

+ P,
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yj =xj − sin

(
6πx1 +

jπ

D

)
for j = 1, 2, . . . D, (15.575)

J1 = 3, 5, . . . D, (15.576)

J2 = 2, 4, . . . D, (15.577)

P = 0.50 (D −Dopt)
2 , (15.578)

where Dopt is optimal dimension of a solution obtained by the getOptN function. Variable N is an
integer and it defines the number of disconnected parts of the true Pareto-front. The variable was
set to N = 2, therefore the true Pareto-front has N + 1 = 3 disconnected parts. Constant ε > 0 is
set to ε = 0.1.

Optimal solutions corresponds to xj = sin
(

6πx1 + jπ
D

)
, where j = 2, 3, . . . D. Optimal positions

and fitness values are calculated during the problem initialization.

15.4.23 VNDMOUF7

This is the modified seventh benchmark problem of test instances for the CEC 2009 [20]. The
problem is scalable in decision space. The number of decision variables is defined by nVarsList

property of problem. Optimal number of dimensions is defined by nOptList parameter along with
nParts and order properties.

Limits:

x1 ∈ 〈0, 1〉 , (15.579)

xi ∈ 〈−1, 1〉 for i = 2, 3, . . . D, (15.580)

where D denotes the number of decision variables and it is arbitrary.
Fitness functions:

f1 (x) = 5
√
x1+

2

|J1|
∑
j∈J1

y2
j , (15.581)

f2 (x) = 1− 5
√
x1+

2

|J2|
∑
j∈J2

y2
j + P, (15.582)

yj = xj − sin

(
6πx1 +

jπ

D

)
for j = 1, 2, . . . D, (15.583)

J1 = 3, 5, . . . D, (15.584)

J2 = 2, 4, . . . D, (15.585)

P = 0.15 (D −Dopt)
2 , (15.586)

where Dopt is optimal dimension of a solution obtained by the getOptN function.

Optimal solutions corresponds to xj = sin
(

6πx1 + jπ
D

)
, where j = 2, 3, . . . D. Optimal positions

and fitness values are calculated during the problem initialization.

15.4.24 VNDMOUF9

This is the modified ninth benchmark problem of test instances for the CEC 2009 [20]. The problem
is scalable in decision space. The number of decision variables is defined by nVarsList property
of problem. Optimal number of dimensions is defined by nOptList parameter along with nParts

and order properties.
Limits:

x1 ∈ 〈0, 1〉 , (15.587)

x2 ∈ 〈0, 1〉 , (15.588)

xi ∈ 〈−2, 2〉 for i = 3, 4, . . . D, (15.589)
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where D denotes the number of decision variables and it is arbitrary.
Fitness functions:

f1 (x) =0.5
[
max

{
0, (1 + ε)

(
1− 4 (2x1 − 1)2

)}
+ 2x1

]
x2+ (15.590)

2

|J1|
∑
j∈J1

[
xj − 2x2 sin

(
2πx1 +

jπ

D

)]2

+ P,

f2 (x) =0.5
[
max

{
0, (1 + ε)

(
1− 4 (2x1 − 1)2

)}
− 2x1 + 2

]
x2+ (15.591)

2

|J2|
∑
j∈J2

[
xj − 2x2 sin

(
2πx1 +

jπ

D

)]2

+ P,

f3 (x) =1− x2+ (15.592)

2

|J3|
∑
j∈J3

[
xj − 2x2 sin

(
2πx1 +

jπ

D

)]2

+ P,

J1 = 4, 7, . . . D, (15.593)

J2 = 5, 8, . . . D, (15.594)

J3 = 3, 6, . . . D, (15.595)

P = 0.25 (D −Dopt)
2 , (15.596)

where Dopt is optimal dimension of a solution obtained by the getOptN function. Constant ε > 0
is set to ε = 0.1.

Optimal solutions are divided into two disconected parts where x1 ∈ [0, 0.25]∪[0.75, 1], 0 ≤ x2 ≤ 1,

and xj = 2x2 sin
(

2πx1 + jπ
D

)
, where j = 3, 4, . . . D. Optimal positions and fitness values are cal-

culated during the problem initialization.

15.4.25 VNDMOUF10

This is the modified tenth benchmark problem of test instances for the CEC 2009 [20]. The problem
is scalable in decision space. The number of decision variables is defined by nVarsList property
of problem. Optimal number of dimensions is defined by nOptList parameter along with nParts

and order properties.
Limits:

x1 ∈ 〈0, 1〉 , (15.597)

x2 ∈ 〈0, 1〉 , (15.598)

xi ∈ 〈−2, 2〉 for i = 3, 4, . . . D, (15.599)

where D denotes the number of decision variables and it is arbitrary.
Fitness functions:

f1 (x) = cos (0.5x1π) cos (0.5x2π)
2

|J1|
∑
j∈J1

[
4y2
j − cos (8πyj) + 1

]
+ P, (15.600)

f2 (x) = cos (0.5x1π) sin (0.5x2π)
2

|J2|
∑
j∈J2

[
4y2
j − cos (8πyj) + 1

]
+ P, (15.601)

f3 (x) = sin (0.5x1π)
2

|J3|
∑
j∈J3

[
4y2
j − cos (8πyj) + 1

]
+ P, (15.602)

yj = xj − 2x2 sin

(
2πx1 +

jπ

D

)
for j = 1, 2, . . . D, (15.603)

J1 = 4, 7, . . . D, (15.604)

J2 = 5, 8, . . . D, (15.605)

J3 = 3, 6, . . . D, (15.606)

P = 0.50 (D −Dopt)
2 , (15.607)
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where Dopt is optimal dimension of a solution obtained by the getOptN function. Constant ε > 0
is set to ε = 0.1.

Optimal solutions corresponds to xj = 2x2 sin
(

2πx1 + jπ
D

)
, where j = 3, 4, . . . D. Optimal

positions and fitness values are calculated during the problem initialization.

15.4.26 VNDMOZDT1

This is the modified first benchmark problem from Zitzler et al.’s test suite [1]. The problem is
scalable in decision space. The number of decision variables is defined by nVarsList property of
problem. Optimal number of dimensions is defined by nOptList parameter along with nParts and
order properties.

Limits:

xi ∈ 〈0, 1〉 for i = 1, 2, . . . D, (15.608)

where D denotes the number of decision variables and it is arbitrary.

Fitness functions:

f1 (x) = x1, (15.609)

f2 (x) = h (x)

[
1−

√
x1

h (x)

]
+ P, (15.610)

h (x) = 1 + 9

∑D
i=2 xi
D − 1

, (15.611)

P = 0.10 (D −Dopt)
2 , (15.612)

where Dopt is optimal dimension of a solution obtained by the getOptN function.

Optimal solutions corresponds to x1 ∈ 〈0, 1〉 and xi = 0, where i = 2, 3, . . . D. Optimal positions
and fitness values are calculated during the problem initialization.

15.4.27 VNDMOZDT2

This is the modified second benchmark problem from Zitzler et al.’s test suite [1]. The problem is
scalable in decision space. The number of decision variables is defined by nVarsList property of
problem. Optimal number of dimensions is defined by nOptList parameter along with nParts and
order properties.

Limits:

xi ∈ 〈0, 1〉 for i = 1, 2, . . . D, (15.613)

where D denotes the number of decision variables and it is arbitrary.

Fitness functions:

f1 (x) = x1, (15.614)

f2 (x) = h (x)

[
1−

(
x1

h (x)

)2
]

+ P, (15.615)

h (x) = 1 + 9

∑D
i=2 xi
D − 1

, (15.616)

P = 0.10 (D −Dopt)
2 , (15.617)

where Dopt is optimal dimension of a solution obtained by the getOptN function.

Optimal solutions corresponds to x1 ∈ 〈0, 1〉 and xi = 0, where i = 2, 3, . . . D. Optimal positions
and fitness values are calculated during the problem initialization.
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15.4.28 VNDMOZDT3

This is the modified third benchmark problem from Zitzler et al.’s test suite [1]. The problem is
scalable in decision space. The number of decision variables is defined by nVarsList property of
problem. Optimal number of dimensions is defined by nOptList parameter along with nParts and
order properties.

Limits:

xi ∈ 〈0, 1〉 for i = 1, 2, . . . D, (15.618)

where D denotes the number of decision variables and it is arbitrary.
Fitness functions:

f1 (x) = x1, (15.619)

f2 (x) = h (x)

[
1−

√
x1

h (x)
− x1

h (x)
sin (10π · x1)

]
+ P, (15.620)

h (x) = 1 + 9

∑D
i=2 xi
D − 1

, (15.621)

P = 0.10 (D −Dopt)
2 , (15.622)

where Dopt is optimal dimension of a solution obtained by the getOptN function.
Optimal solutions corresponds to x1 ∈ 〈0, 1〉 and xi = 0, where i = 2, 3, . . . D. Optimal positions

and fitness values are calculated during the problem initialization.

15.4.29 VNDMOZDT4

This is the modified fourth benchmark problem from Zitzler et al.’s test suite [1]. The problem is
scalable in decision space. The number of decision variables is defined by nVarsList property of
problem. Optimal number of dimensions is defined by nOptList parameter along with nParts and
order properties.

Limits:

x1 ∈ 〈0, 1〉 , (15.623)

xi ∈ 〈−5, 5〉 for i = 2, 3, . . . D, (15.624)

where D denotes the number of decision variables and it is arbitrary.
Fitness functions:

f1 (x) = x1, (15.625)

f2 (x) = h (x)

[
1−

√
x1

h (x)

]
+ P, (15.626)

h (x) = 1 + 10 (D − 1) +

[
D∑
i=2

x2
i − 10 cos (4π · xi)

]
, (15.627)

P = 0.20 (D −Dopt)
2 , (15.628)

where Dopt is optimal dimension of a solution obtained by the getOptN function.
Optimal solutions corresponds to x1 ∈ 〈0, 1〉 and xi = 0, where i = 2, 3, . . . D. Optimal positions

and fitness values are calculated during the problem initialization.

15.4.30 VNDMOZDT6

This is the modified sixth benchmark problem from Zitzler et al.’s test suite [1]. The problem is
scalable in decision space. The number of decision variables is defined by nVarsList property of
problem. Optimal number of dimensions is defined by nOptList parameter along with nParts and
order properties.
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Limits:
xi ∈ 〈0, 1〉 for i = 1, 2, . . . D, (15.629)

where D denotes the number of decision variables and it is arbitrary.
Fitness functions:

f1 (x) = 1− exp (−4x1) sin6 (6π · x1) , (15.630)

f2 (x) = h (x)

[
1−

(
f1 (x)

h (x)

)2
]

+ P, (15.631)

h (x) = 1 + 9

[∑D
i=2 xi
D − 1

]0.25

, (15.632)

P = 0.10 (D −Dopt)
2 , (15.633)

where Dopt is optimal dimension of a solution obtained by the getOptN function.
Optimal solutions corresponds to x1 ∈ 〈0, 1〉 and xi = 0, where i = 2, 3, . . . D. Optimal positions

and fitness values are calculated during the problem initialization.
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Chapter 16

Install FOPS Package

FOPS package is installed by following steps:

1. Copy whole directory with FOPS toolbox to an arbitrary destination.

2. Open a script installFOPS in +internal/+install directory.

3. Run the script.

This script adds current path to a MATLAB’s search paths, therefore user can use FOPS
package in an arbitrary location. Note that current path during install has to be the root folder of
FOPS toolbox.

Script also modifies text files problemFunctionPaths.txt and settingsFilePaths.txt in
+internal/+install directory. These text files contains paths which are scanned for problem
functions and task settings files in FOPS constructor. Therefore, first line below header contains
location (”default” path) where the FOPS package is installed. This specific line is modified by
installFOPS script.

If user wants FOPS to scan another locations each time it is initialized, whole path to folder
with problem functions and/or task settings files should be put below the line modified by FOPS
installer.

Please note, that modification of ”default” path in problemFunctionPaths.txt and
settingsFilePaths.txt files can lead to unavailable benchmark problems in FOPS package.

16.1 Uninstall FOPS Package

To uninstall FOPS package, use the uninstallFOPS script in the same directory. This script
removes current path from the MATLAB paths. Text files problemFunctionPaths.txt and
settingsFilePaths.txt in +internal/+install directory remain unmodified. Note that cur-
rent path during uninstall has to be the root folder of FOPS toolbox.
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