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Chapter 1

Kernel

1.1 Start of AToM

AToM can be started by following command written in the MATLAB command line:

atom = Atom.start();

The assignment into the variable atom is particularly important as this object is used for all
operations with AToM from the MATLAB command line and it is also important for exit of the
AToM (see the next section).

There are advanced possibilities how to start AToM:

� atom = Atom.start(true);

� atom = Atom.start(false);

The former option is equivalent to atom = Atom.start(); and starts AToM with GUI, the
latter option only start AToM and does not open GUI. For further details related to the start of
AToM, see the documentation.

1.2 Termination of AToM

AToM package must be properly turned off by typing atom.quit; into the MATLAB command
line. Alternatively, AToM can be shut down from GUI clicking on AToM – Quit.

Since AToM class is designed with the singleton pattern, there is always only one instance of
the AToM. Therefore, in case the AToM is not terminated properly, new start of AToM only opens
already opened session.

1.3 How to forcibly restart AToM

In the rare cases when AToM failed or something goes wrong, there is necessity to exit AToM in a
non-standard way and restore the session by deleting all instances of the associated AToM classes.
The following commands are recommended:
close all force

clear classes

Notice that all variables from MATLAB base workspace are deleted and all figures are closed.
Therefore, you may backup/save your work before.

In principle, it may happen that the above mentioned procedure does not help. Then try to
restart MATLAB.
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1.4. ATOM PROJECT

1.4 AToM Project

1.4.1 Creation of the AToM Project

If the user wants to start with the antenna design from scratch, new AToM project has to be
created. This can be done by the MATLAB command atom.createProject('myProject1')

or from the main GUI by clicking on Create project. When new project is created, AToM
automatically switch to this project.

1.4.2 Opening of the existing AToM project

AToM allows to open projects which were created previously and saved (as *.atom file). Then the
project can be opened from the MATLAB command line as atom.openProject('myProject1')
or from the main GUI clicking on Open project. Notice that in the command above the path
to the file must be added if the project is not located in the actual folder. When new project is
opened, AToM automatically switch to this project.

1.4.3 How to switch between projects

There can be many projects opened simultaneously. Then, the user can switch between them either
in main GUI or by typing the following command in the MATLAB command line
atom.selectProject('myProject1'); Alternatively, the projects can be selected with respect
to their position as, e.g., atom.selectProject(1);

1.4.4 Working with (selected) project in the MATLAB command line

Once the project is created or opened, the user can work with this project freely, either in GUI or
in the MATLAB command line. Then the command always starts with
atom.selectedProject.<command> where <command> is an operation done by the user. The
various commands are related to creation and adjustment of geometry, discretization, physics set-
tings and simulation with the solvers.

1.5 History

While AToM project is opened, all following operations related to that projects are recorded as
MATLAB-compatible commands. The user can see this list in the AToM History Viewer, which can
be opened by clicking on History button in the main GUI, or by atom.gui.historyViewer.open

Remarkable properties of the History Viewer are:

� The ability to export the complete list of commands as AToM-executable standalone project.
To do that, click on Write script button or use command
atom.selectedProject.history.writeScript('myScript.m'); Notice that all the op-
erations with the opened projects are also recorded in <projectName.log> files, which serve
as the backup files. These log files cannot be deleted while the corresponding projects are
opened.

� Add commentary between selected lines, to do that, click on Add Comment. The commentary
can be also removed or edited.

1.6 Workspace

AToM Workspace enables creation and management of variables which allow easy parametrization
of almost everything in AToM projects. Every variable in Workspace has its name, expression and
description. All variables can be arbitrarily linked through expressions and arbitrary MATLAB
functions in search path. Editing of one variable automatically cause change of other linked variables

2



CHAPTER 1. KERNEL

and also cause immediate change of related project properties (mesh density, frequency points, size
of geometry, ...). All values of variables are treated as unitless and its usage in AToM models
presumes values in SI base units. Variables has these properties:

� name - unique identifier of variable. Has to fulfil MATLAB variable conventions (function
isvarname) and it is not allowed to use any of these names: 'who', 'whos', 'which',
'clear' and 'eval'.

� expression - can be arbitrary row vector of characters containing valid MATLAB Expres-
sion (e.g., 'cos(0:0.1:2*pi)', 'myFcn(pi)'), numeric matrix (e.g., [1.1 1e5 exp(2)],
uint16(10), magic(4)) and matrix of logical values (e.g., true, [false(5), ~eye(5)]).
Expression can not contain commands who, whos, which, clear, eval and close. If ex-
pression is defined as numerical or logical matrix, passed values are converted by function
mat2str, i.e., actual computation command of expression will be lost (e.g., not(eye(2)) is
converted to '[false true;true false]'). From this perspective using string expressions
is preferred and more clear.

� description - can be arbitrary character row vector.

1.6.1 Public Methods

Every AToM project has its own Workspace and it is possible to access it in selected project via
Command Window by atom.selectedProject.workspace. It is not possible to share variables
between individual AToM projects.

assignInMatlab

workspace.assignInMatlab()

Assign all user-defined variables from AToM Workspace in MATLAB base workspace. Note
that already existing variables will be replaced and editing of variables in MATLAB base
workspace has no influence in variable in AToM Workspace.

addVariable

workspace.addVariable(varName, varExpression, varDescription)

Add variable with name varName, expression varExpression and description varDescription

into workspace. All inputs can be char vectors. Moreover varExpression can be also nu-
merical and logical 2-D matrix. In this case mat2str(varExpression) is used. Definition
of description is optional.

deleteVariable

workspace.deleteVariable(varName)

Delete variable with name varName from Workspace. It is not possible to delete variable
which is used in expression of another variable or in some AToM model.

editDescription

workspace.editDescription(varName, newDescription)

Edit description of variable varName to newDescription.

editExpression

workspace.editExpression(varName, newExpression)

Edit expression of variable varName to newExpression.

editName

workspace.editName(oldName, newName)

Edit name of variable oldName to newName. All expressions of other variables which contain
name oldName will be edited to newName.

evalExpression

value = workspace.evalExpression(expression)

Evaluates expression expression in AToM Workspace. Value of expression is returned in
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output argument value. Invalid Matlab expression leads to value = NaN.

getValue

varValue = workspace.getValue(varName)

Return value of variable varName into MATLAB base workspace as varValue variable.

loadConstants

workspace.loadConstants()

Import physical constants defined in models.utilities.constants. Imported are c0 (speed
of light, 299792458 ms−1), mu0 (permeability of vacuum, 4π×10−7 Hm−1), ep0 (permittivity
of vacuum, 1/(µ0c

2
0) Fm−1) and Z0 (impedance of free space, c0µ0 Ω).

recalculate

workspace.recalculate()

Recalculate all variables in AToM Workspace. Useful when using variables calling external
user-defined functions which were edited during work with AToM. NOTE: Will be removed
in future release.

recalculateVariable

workspace.recalculateVariable(varName)

Force recalculation of variable varName. It is useful when expression of variable call external
function, which was changed.

1.6.2 Public Properties

table

Return variable workspaceTable of class table into MATLAB base workspace. Table contain
list and useful properties of all user-defined AToM variables.

1.6.3 Preferences

nSignificantDigitsView

Double: {5}
Number of significant digits of variable value shown in Workspace Viewer and in workspace.table.

1.7 Workspace Viewer

AToM Workspace has its own GUI called Workspace Viewer and it is accessible via Command
Window by atom.gui.workspaceViewer. The only public methods are workspaceViewer.open()

and workspaceViewer.close(). Appearance of Workspace Viewer is shown in Fig. 1.1. Viewer
also contain class and size of variable’s value and overall status of variables. Shown informations
are the same as from workspace.table.

Adding variables is possible simply by typing its name and expression into empty cell in table.
Fill description is optional. To delete variable select one or more cells in variable row by mouse and
push “Delete Variable” button. It is possible to select more cells in more rows by Ctrl or Shift and
left click. Then all variables on selected rows will be deleted. By pushing “Load Constants” button
constants from models.utilities.constants will be loaded. By pushing “Assign In Matlab” all
variables will be assigned in MATLAB base workspace. By pushing “Recalculate Var.” all selected
rows with variables will recalculated.

1.7.1 Preferences

columnWidth

Double: {[100 100 60 120 50 50 40]}
Width of columns in Workspace Viewer. Double of size 1 x 7.
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Figure 1.1: Workspace Viewer with several variables.
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Chapter 2

Geom

2.1 Geom class

Geom is a standalone toolbox for creation, modification and combination of geometry objects.
User can work with Geom using a GUI (see refdesignViewer) or using Matlab command window.
In the later case, user needs a reference to refProject or directly to a Geom object (geom = ...

atom.selectedProject.geom). When working with project every command is s saved to AToM
session while when working directly with reference to Geom object not.

Geom methods accept as input variables Matlab values - double or char, user variables from
current Matlab workspace or AToM Workspace Variables. In case of using Workspace Variables
all objects influenced by the Varibles are instantly modified when the Variable is changed by user.

User defines the desired model from individual primitives. All the primitives can be defined in
arbitrary 3D position. The portfolio of available object types is listed below:

� 0D: Point

� 1D: Line, PolyLine, ParallelogramFrame, EllipseArc, and EquationCurve.

� 2D: Parallelogram, Ellipse, Polygon.

Geom object is a container for user-defined objects. All defined objects are sorted into corre-
sponding property of geom object: lines to geom.line, ellipses to geom.ellipse etc. Every object
has its unique name. Primitives can be combined to form more complex models using Boolean
operations: 1D with 1D objects, 2D with 2D.

AToM Workspace enables creation and management of variables which allow easy parametriza-
tion of almost everything in AToM projects. Every variable in Workspace has its name, expression
and description. All variables can be arbitrarily linked through expressions and arbitrary Mat-
lab functions in search path. Editing of one variable automatically cause change of other linked
variables and also cause immediate change of related project properties (mesh density, frequency
points, size of geometry, ...). All values of variables are treated as unitless and its usage in AToM
models presumes values in SI base units.

2.2 Geom Primitives

Point

Point is a 0D object created by a command:

atom.selectedProject.geom.addPoint(coordVal, name)

Variable coordVal is either double [1× 3] or a Workspace Variable.
Optional variable name is char [1 ×N ]. Workspace Variable cannot be used to define object’s

name!
Point and it’s properties is depicted in Fig. 2.1. For the full header refer to addPoint.
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coordVal

Figure 2.1: Point defined in 3D and its properties.

Line

Line is a 1D object created by a command:

atom.selectedProject.geom.addLine(points, name)

Variable points is either double [2× 3] or a Workspace Variable.

Optional variable name is char [1 ×N ]. Workspace Variable cannot be used to define object’s
name!

Line and it’s properties is depicted in Fig. 2.2. For the full header refer to addLine.

points(2,:)

points(1,:)

Figure 2.2: Line defined in 3D and its properties.

PolyLine

PolyLine is a 1D object created by a command:

atom.selectedProject.geom.addPolyLine(points, name)

Variable points is either double [N × 3] or a Workspace Variable.

Optional variable name is char [1 ×N ]. Workspace Variable cannot be used to define object’s
name!

PolyLine and it’s properties is depicted in Fig. 2.3. For the full header refer toaddPolyLine.

points(2,:)

points(1,:)

points(3,:)

points(4,:)
points(N,:)

...

Figure 2.3: PolyLine defined in 3D and its properties.
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RectangleFrame

RectangleFrame is a 1D object consisiting of Rectangle’s border lines. As rectangle is degenerated
form of Parallelogram, all RectangleFrames can be found in:

parFrames = atom.selectedProject.geom.parallelogramframe;

RectangleFrame can be created by a command:

atom.selectedProject.geom.addRectangleFrame(center, width, height, normal, ...

name)

Variable center is either double [1 × 3] or a Workspace Variable. It specifies a position of
rectangle’s center.

Variable width is either double [1× 1] or a Workspace Variable.

Variable height is either double [1× 1] or a Workspace Variable.

Optional variable normal defines orientation of the RectangleFrame. It has to be char [1× 1].
Possible values are: 'z' (default), 'y' or 'x'. Object can be rotated arbitrarily using transfor-
mation methods - see Transformations

Optional variable name is char [1 ×N ]. Workspace Variable cannot be used to define object’s
name!

RectangleFrame and it’s properties is depicted in Fig. 2.4. For the full header refer to addRect-
angleFrame.

center

width

height

Figure 2.4: RectangleFrame defined in 3D and its properties.

ParallelogramFrame

ParallelogramFrame is a 1D object consisiting of Parallelogram’s border lines. All created Paral-
lelogramFrames can be found in:

parFrames = atom.selectedProject.geom.parallelogramframe;

ParallelogramFrame can be created by a command:
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atom.selectedProject.geom.addRectangleFrame(lowLeftCorner, lowRightCorner, ...

highLeftCorner, name)

Variable lowLeftCorner is either double [1×3] or a Workspace Variable. It specifies a position
of parallelogram’s low-left corner, viewed from side where the object’s normal points to.

Variable lowRightCorner is either double [1×3] or a Workspace Variable. It specifies a position
of parallelogram’s low-right corner.

Variable highLeftCorner is either double [1×1] or a Workspace Variable. It specifies a position
of parallelogram’s high-left corner.

Optional variable name is char [1 ×N ]. Workspace Variable cannot be used to define object’s
name!

ParallelogramFrame and it’s properties is depicted in Fig. 2.5. For the full header refer to
addParallelogramFrame.

lowLeftCorner
lowRightCorner

highLeftCorner

Figure 2.5: ParallelogramFrame defined in 3D and its properties.

CircleArc

CircleArc is a 1D object consisting of Circle’s border curve. As circle is degenerated form of ellipse,
all CircleArcs can be found in:

ellipseArcs = atom.selectedProject.geom.ellipsearc;

CircleArc can be created by a command:

atom.selectedProject.geom.addCircleArc(center, radius, normal, name);

Variable center is either double [1 × 3] or a Workspace Variable. It specifies a position of
circle’s center.

Variable radius is either double [1× 1] or a Workspace Variable.
Optional variable normal defines orientation of the CircleArc. It has to be char [1×1]. Possible

values are: 'z' (default), 'y' or 'x'. Object can be rotated arbitrarily using transformation
methods - see Transformations

Optional variable name is char [1 ×N ]. Workspace Variable cannot be used to define object’s
name!
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CircleArc and it’s properties is depicted in Fig. 2.6. For the full header refer to addCircleArc.

center

ra
di

us

normal = ´z´ or ´y´ or ´x´

Figure 2.6: CircleArc defined in 3D and its properties.

EllipseArc

EllipseArc is a 1D object consisting of Ellipse’s the whole border curve or its part define by angles.
All created EllipseArcs can be found in:

ellipseArcs = atom.selectedProject.geom.ellipsearc;

EllipseArc can be created by a command:

atom.selectedProject.geom.addEllipseArc(center, majorVertex, minorVertex, ...

startAngle, angle, name);

Variable center is either double [1 × 3] or a Workspace Variable. It specifies a position of
ellipse’s center point.

Variable majorVertex is either double [1× 3] or a Workspace Variable. It specifies a position
of ellipse’s major axis vertex. It defines orientation of ellipse in 3D in combination with center

and mainorVertex.
Variable minorVertex is either double [1× 3] or a Workspace Variable. It specifies a position

of ellipse’s minor axis vertex. It defines orientation of ellipse in 3D in combination with center

and majorVertex.
Variable startAngle is either double [1× 1] or a Workspace Variable. It specifies the angular

start of an ellipse arc in radians.
Variable angle is either double [1× 1] or a Workspace Variable. It specifies the angular length

of an ellipse arc in radians.
Optional variable name is char [1 ×N ]. Workspace Variable cannot be used to define object’s

name!
EllipseArc and it’s properties is depicted in Fig. 2.7. For the full header refer to addEllipseArc.

EquationCurve

EquationCurve is a 1D object of arbitrary curve defined by three handle functions. All created
EquationCurves can be found in:

equationCurves = atom.selectedProject.geom.equationcurve;
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center

majorVertex

minorV
erte

x

 = startAngle
 = angle

Figure 2.7: EllipseArc defined in 3D and its properties.

EquationCurve can be created by a command:

atom.selectedProject.geom.addEquationCurve(equationX, equationY, equationZ, ...

paramInterval, name);

Variable equationX is either char [1×N ] or a Workspace Variable. It contains Matlab definition
of handle function defining equation for x -axis.

Variable equationY is either char [1×N ] or a Workspace Variable. It contains Matlab definition
of handle function defining equation for y-axis.

Variable equationZ is either char [1×N ] or a Workspace Variable. It contains Matlab definition
of handle function defining equation for z -axis.

Variable paramInterval is either double [1 × 2] or a Workspace Variable. It specifies the
parameter start and end value used for handle functions.

Optional variable name is char [1 ×N ]. Workspace Variable cannot be used to define object’s
name!

EquationCurve and it’s properties is depicted in Fig. 2.8. For the full header refer to addEqua-
tionCurve.

paramInterval = [-4pi,4pi]
equationX = @(t) r.*sin(t)
equationY = @(t) r.*cos(t)
equationZ = @(t) 0*t

Figure 2.8: EquationCurve defined in 3D and its properties.

Rectangle

Rectangle is a 2D object. As rectangle is degenerated form of Parallelogram, all Rectangles can be
found in:

parallelograms = atom.selectedProject.geom.parallelogram;
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Rectangle can be created by a command:

atom.selectedProject.geom.addRectangle(center, width, height, normal, name);

Variable center is either double [1 × 3] or a Workspace Variable. It specifies a position of
rectangle’s center.

Variable width is either double [1× 1] or a Workspace Variable.

Variable height is either double [1× 1] or a Workspace Variable.

Optional variable normal defines orientation of the Rectangl. It has to be char [1×1]. Possible
values are: 'z' (default), 'y' or 'x'. Object can be rotated arbitrarily using transformation
methods - see Transformations

Optional variable name is char [1 ×N ]. Workspace Variable cannot be used to define object’s
name!

Rectangle and it’s properties is depicted in Fig. 2.9. For the full header refer to addRectangle.

center

width

height

Figure 2.9: Rectangle defined in 3D and its properties.

Parallelogram

Parallelogram is a 2D object. All created Parallelograms can be found in:

parallelograms = atom.selectedProject.geom.parallelogram;

Parallelogram can be created by a command:

atom.selectedProject.geom.addParallelogram(lowLeftCorner, lowRightCorner, ...

highLeftCorner, name);

Variable lowLeftCorner is either double [1×3] or a Workspace Variable. It specifies a position
of parallelogram’s low-left corner, viewed from side where the object’s normal points to.

Variable lowRightCorner is either double [1×3] or a Workspace Variable. It specifies a position
of parallelogram’s low-right corner.

Variable highLeftCorner is either double [1×1] or a Workspace Variable. It specifies a position
of parallelogram’s high-left corner.
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Optional variable name is char [1 ×N ]. Workspace Variable cannot be used to define object’s
name!

Parallelogram and it’s properties is depicted in Fig. 2.10. For the full header refer to addPar-
allelogram.

lowLeftCorner
lowRightCorner

highLeftCorner

Figure 2.10: Parallelogram defined in 3D and its properties.

Circle

Circle is a 2D object. As circle is degenerated form of ellipse, all Circles can be found in:

ellipses = atom.selectedProject.geom.ellipse;

CircleArc can be created by a command:

atom.selectedProject.geom.addCircle(center, radius, normal, name);

Variable center is either double [1 × 3] or a Workspace Variable. It specifies a position of
circle’s center.

Variable radius is either double [1× 1] or a Workspace Variable.

Optional variable normal defines orientation of the Circle. It has to be char [1 × 1]. Possible
values are: 'z' (default), 'y' or 'x'. Object can be rotated arbitrarily using transformation
methods - see Transformations

Optional variable name is char [1 ×N ]. Workspace Variable cannot be used to define object’s
name!

Circle and it’s properties is depicted in Fig. 2.11. For the full header refer to addCircle.

Ellipse

Ellipse is a 2D object. It can be either full ellipse or ellipse sector defined by angles. All created
Ellipses can be found in:

ellipses = atom.selectedProject.geom.ellipse;

Ellipse can be created by a command:
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center

ra
di

us

normal = ´z´ or ´y´ or ´x´

Figure 2.11: Circle defined in 3D and its properties.

atom.selectedProject.geom.addEllipse(center, majorVertex, minorVertex, startAngle, ...

angle, name);

Variable center is either double [1 × 3] or a Workspace Variable. It specifies a position of
ellipse’s center point.

Variable majorVertex is either double [1× 3] or a Workspace Variable. It specifies a position
of ellipse’s major axis vertex. It defines orientation of ellipse in 3D in combination with center

and mainorVertex.

Variable minorVertex is either double [1× 3] or a Workspace Variable. It specifies a position
of ellipse’s minor axis vertex. It defines orientation of ellipse in 3D in combination with center

and majorVertex.

Variable startAngle is either double [1× 1] or a Workspace Variable. It specifies the angular
start of an ellipse in radians.

Variable angle is either double [1× 1] or a Workspace Variable. It specifies the angular length
of an ellipse in radians.

Optional variable name is char [1 ×N ]. Workspace Variable cannot be used to define object’s
name!

Ellipse and it’s properties is depicted in Fig. 2.12. For the full header refer to addEllipse.

Polygon

Polygon is a 2D object. It can be created by a command:

atom.selectedProject.geom.addPolygon(points, name);

Variable points is either double [N × 3] or a Workspace Variable. If first and last point from
points are different, first point is added to the end of points.

Optional variable name is char [1 ×N ]. Workspace Variable cannot be used to define object’s
name!

Polygon and it’s properties is depicted in Fig. 2.13. For the full header refer to addPolygon.

15



2.3. TRANSFORMATIONS

center

majorAxisPoint

minorA
xisP

oint

 = startAngle
 = angle

Figure 2.12: Ellipse defined in 3D and its properties.

points(1,:) points(2,:)

points(3,:)

points(4,:)

points(5,:)

points(6,:)

points(7,:)

Figure 2.13: Polygon defined in 3D and its properties.

2.3 Transformations

Rotate

User can rotate arbitrary object using command:

atom.selectedProject.geom.rotateObject(name, vector, angle, type)

Variable name is char [1×N ] identifying object to be rotated.

Variable vector is double [1 or 2 ×N ] or a Workspace Variable. If size of vector is [1 ×N ],
rotation axis is directly vector (line going through origin and point specified in vector). If size
of vector is [2×N ], rotation axis is a line going through two points specified in vector(1,:) and
vector(2,:).

Variable angle is either double [1×1] or a Workspace Variable. It specifies the angle of rotation
in radians. Angle can be from interval 〈0; 2π〉.

Optional variable type is object of enumeration models.geom.GeomObjectType. Specification
of type can speed up the search of object. Possible types are listed in GeomObjectType.
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RotateX

User can rotate arbitrary object around x -axis using command:

atom.selectedProject.geom.rotateXObject(name, angle, type)

Variable name is char [1×N ] identifying object to be rotated.
Variable angle is either double [1×1] or a Workspace Variable. It specifies the angle of rotation

in radians. Angle can be from interval 〈0; 2π〉.
Optional variable type is object of enumeration models.geom.GeomObjectType. Specification

of type can speed up the search of object. Possible types are listed in GeomObjectType.

RotateY

User can rotate arbitrary object around y-axis using command:

atom.selectedProject.geom.rotateYObject(name, angle, type)

Variable name is char [1×N ] identifying object to be rotated.
Variable angle is either double [1×1] or a Workspace Variable. It specifies the angle of rotation

in radians. Angle can be from interval 〈0; 2π〉.
Optional variable type is object of enumeration models.geom.GeomObjectType. Specification

of type can speed up the search of object. Possible types are listed in GeomObjectType.

RotateZ

User can rotate arbitrary object around z -axis using command:

atom.selectedProject.geom.rotateZObject(name, angle, type)

Variable name is char [1×N ] identifying object to be rotated.
Variable angle is either double [1×1] or a Workspace Variable. It specifies the angle of rotation

in radians. Angle can be from interval 〈0; 2π〉.
Optional variable type is object of enumeration models.geom.GeomObjectType. Specification

of type can speed up the search of object. Possible types are listed in GeomObjectType.

Scale

User can scale arbitrary object in different directions using command:

atom.selectedProject.geom.scaleObject(name, vector, type)

Variable name is char [1×N ] identifying object to be rotated.
Variable vector is double [1×N ] or a Workspace Variable. Individual entries of vector specify

scale in x, y or z axis.
Optional variable type is object of enumeration models.geom.GeomObjectType. Specification

of type can speed up the search of object. Possible types are listed in GeomObjectType.

Translate

User can translate arbitrary object in a direction specified by vector using command: atom.selectedProject.geom.translateObject(name, ...

vector, type)

Variable name is char [1×N ] identifying object to be rotated.
Variable vector is double [1×N ] or a Workspace Variable. Individual entries of vector specify

translation in x, y or z axis.
Optional variable type is object of enumeration models.geom.GeomObjectType. Specification

of type can speed up the search of object. Possible types are listed in GeomObjectType.
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2.4 Boolean operations

Boolean operations enable user to build more complex models from individual Geom Primitives.
Boolean operations are always performed on a pair of objects of same kind (1D or 2D). First object
becomes so called “master” and second one “slave”. Master object contains information about the
changed geometry, is displayed in Design Viewer and is further meshed. Slave object remains in
the Geom class container but is not displayed and meshed. Every object can be used as slave only
once! The master/slave bonding can be canceled by deleting the command specifying the Boolean
operation from object’s history - see 2.5.

Unite

Boolean operation unite makes union of two objects. It is performed using a command:

atom.selectedProject.geom.boolean.unite(name1, name2)

Variables name1 and name2 are names of objects to be united. Example union is displayed in
Fig. 2.14. For the full header refer to unite.

circ

par

circ

Figure 2.14: Unite method performed on two 2D objects: 'circ' + 'par'.

Subtract

Boolean operation subtract makes subtraction of two objects. It is performed using a command:

atom.selectedProject.geom.boolean.subtract(name1, name2)

Variables name1 and name2 are names of objects to be subtracted. Example subtraction is
displayed in Fig. 2.15. For the full header refer to subtract.

circ

par

circ

Figure 2.15: Subtract method performed on two 2D objects: 'circ' + 'par'.
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2.5 Common methods

Delete Object

Every object can be deleted from the current Project using a command:

atom.selectedProject.geom.deleteObject(name, type)

Variable name is char [1×N ] identifying object to be deleted.

Optional variable type is object of enumeration models.geom.GeomObjectType. Specification
of type can speed up the search of object. Possible types are listed in GeomObjectType.

If a slave object is deleted its master object is directly recomputed with mo influence of the
deleted slave object.

If a master object is deleted, all of it’s slave objects are deleted.

Rename

As name of object is it’s only identification. user can specify it’s name when the object is created.
Also, after creation of object, it can be renamed using a command:

atom.selectedProject.geom.renameObject(oldName, newName, type)

Variable oldName is char [1×N ] identifying object to be renamed.

Variable newName is char [1×N ] specifying new object’s name. It has to be unique throughout
all the objects in Geom, regardless to object type.

Optional variable type is object of enumeration models.geom.GeomObjectType. Specification
of type can speed up the search of object. Possible types are listed in GeomObjectType.

Copy Object

All objects defined by user can be copied using a command:

atom.selectedProject.geom.copyObject(name, vector, nNew, copyName, type)

Variable name is char [1×N ] identifying object to be copied.

Variable vector is double [1 × 3] identifying where copied objects are translated towards the
initial position of the object to be copied.

Variable nNew is double [1× 1] defining number of copies created.

Optional Variable copyName is char [1 ×N ] specifying new object’s name. Number of copy is
added to the name of every new object.

Optional variable type is object of enumeration models.geom.GeomObjectType. Specification
of type can speed up the search of object. Possible types are listed in GeomObjectType.

Move Command

Every object tracks its own historz of commands. Commands Rotate, RotateX, RotateY, RotateZ,
Scale, Translate and Boolean operations Unite and Subtract and their properties are saved in
GeomObject.history.commands.

User can change the order of commands of selected object using a command:

atom.selectedProject.geom.moveCommandObject(name, oldNum, newNum, type)

Variable name is char [1×N ] identifying object to be redefined.

Variable oldNum is double [1 × 1] identifying number of command to be moved in history of
commands.

Variable newNum is double [1 × 1] identifying new position in history of commands for the
specified command.
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Optional variable type is object of enumeration models.geom.GeomObjectType. Specification
of type can speed up the search of object. Possible types are listed in GeomObjectType.

Remove Command

User can remove any command from history of commands including the Transformations and
Transformations:

atom.selectedProject.geom.removeCommandObject(name, num, type)

Variable name is char [1×N ] identifying object to be redefined.
Variable num is double [1 × 1] identifying number of command that should be removed from

history.
Optional variable type is object of enumeration models.geom.GeomObjectType. Specification

of type can speed up the search of object. Possible types are listed in GeomObjectType.

Redraw Object

Objects composed of curved (not straight) lines have specified number of draw points - number of
samples on every curve. If the number is insufficient from th user’s viewpoint, it can be changed:

atom.selectedProject.geom.redrawObject(name, nPoints, type)

Variable name is char [1×N ] identifying object to be redefined.
Variable nPoints is double [1×1]. It defines number of points used for discretization of curved

lines.
Optional variable type is object of enumeration models.geom.GeomObjectType. Specification

of type can speed up the search of object. Possible types are listed in GeomObjectType.
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Mesh

3.1 General

All discretized curves and planes are represented by MeshObject, which saves data of a given object
– nodes, connectivity and local metadata. Mesh exists only in one instance per project and collects
data from all MeshObject objects – nodes, elements, which are split into 1D edges for curves and
2D edges and connectivity for planar objects.
Metadata for the Mesh object are maximal element size, user defined density function and mesh
density, which defines the number of elements per wavelength. Element size itself is dependent
property1 based on the value of mesh density in case you have enabled computing element size
from frequency. Otherwise mesh size is absolute.
Other properties, even though it is possible to represent them in matrix form, are dependent because
it is much easier to compute them dynamically then ensure data validity after each modification of
the mesh.
Quality of every triangle is computed using following formula introduced in [?]:

q =
4
√

3a

h2
1 + h2

2 + h2
3

, (3.1)

where a is triangle area and hi are edge lengths.

3.2 Creating meshes from AToM geometry

Built-in mesh generator can discretize each geometry into a mesh. A user can modify size of
elements, density distribution and type of elements. Density functions and mesh size/number of
elements per wavelength can be set either globaly, or you can enable local properties for selected
objects.

Listing 3.1: Example of a non-uniform density function in MATLAB.

h = @(x, y) max(0.3*sqrt(x.*x + y.*y), 0.05)

Each geometry is uniform density function in default, but you can set non-uniform density
functions as on the Figure 3.1. AToM supports two types of triangulations. First of them is
Delaunay triangulation [?] which is so called standart with some very nice properties. Second type
of triangulation is called uniform. All elements in this type have the same shape and size. You can
choose from two types – equilateral and right. Note that both uniform triangulations aren’t body
conforming.
Next useful feature is called mesh on fly. When enabled, whenever you change anything which has
direct impact on the mesh computation, mesh is recalculated with up to date settings.

1A special type of property in MATLAB, whose value depends on other values and properties and it is computed
when the property is queried.
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(a) A function heat map. (b) A nonuniform mesh with 1015 triangles.

Figure 3.1: Example of density function from the Listing 3.1 and its impact on the mesh generation.

(a) A Delaunay triangulation with
qavg = 0.9373.

(b) A uniform mesh from equilat-
eral triangles and qavg = 1.

(c) A uniform mesh from right tri-
angles and qavg = 0.87.

Figure 3.2: A discretized square using different types of triangulation.

3.3 Imported and exported meshes

Apart from creating meshes directly from AToM geometry, you can use your own meshes in various
formats.

� NASTRAN

� mphtxt

� GEO

� MATLAB matrices (nodes [N x 3], connectivity list [N x 2/3])

It is also possible to export meshes into nastrat and geo formats directly from AToM.
Note that imported meshes don’t have its AToM geometry. This means you need to perform all
transformations using MeshObject.
Unique atom feature is called mesh to polygon. It allows conversion of an imported mesh into
standart AToM geometry object. This geometry object is of type polygon and can be further
remeshed and tranformed as other geometry objects.

22



CHAPTER 3. MESH

3.4 Getting data from mesh

All data about mesh are stored in Mesh and MeshObject objects. You should never access these
data directly. Always call appropriate mesh data functions.

Listing 3.2: Retrieving data from mesh.

% getting 1D mesh data
data1D = atom.selectedProject.mesh.getMeshData1D();

% getting 2D mesh data
data2D = atom.selectedProject.mesh.getMeshData2D();

3.5 Public functions

List of public methods which can be evaluated on Mesh object. Mesh object can be obtained as
objMesh = atom.selectedProject.mesh

Setting mesh properties

setElementSizeFromFrequency more

objMesh.setElementSizeFromFrequency(name, value)

Enables/disables mesh size from frequency.

setGlobalDensityFunction more

objMesh.setGlobalDensityFunction(functionHandle)

Sets global mesh density function.

setGlobalMeshDensity more

objMesh.setGlobalMeshDensity(densityOfElements)

Sets global mesh density.

setLocalDensityFunction more

objMesh.setLocalDensityFunction(name, functionHandle)

Sets local mesh density function of MeshObject.

setLocalMeshDensity more

objMesh.setLocalMeshDensity(name, meshDensity)

Sets local mesh density of MeshObject.

setMaxElement more

objMesh.setMaxElement(name, size)

Sets maximal element size.

setQualityPriority more

objMesh.setQualityPriority(value)

Enables/disables quality priority during mesh generation.

setUniformMeshType more

objMesh.setUniformMeshType(elemType)

Sets type of uniform mesh.

setUseLocalMeshDensity more

objMesh.setUseLocalMeshDensity(name, value)

Enables/disables use of local mesh density on a MeshObject.

setUseUniformTriangulation more

objMesh.setUseUniformTriangulation(value)

Enables/disables uniform triangulation.
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Mesh data

getBoundaryMesh more

objMesh.getBoundaryMesh()

Computes only 1D boundary mesh of 2D geometry.

getCircumsphere more

[coordinates] = objMesh.getCircumsphere()

Computes mesh circumsphere.

getEdges more

[edges1D, edges2D] = objMesh.getEdges()

Returns edges in mesh.

getMesh more

objMesh.getMesh()

Recomputes the whole mesh.

getMeshData1D more

objMesh.getMeshData1D()

Computes data necessary for 1D MoM computation.

getMeshData2D more

objMesh.getMeshData2D()

Computes data necessary for 2D MoM computation.

getMeshStatistics more

objMesh.getMeshStatistics()

Returns statisctics of computed mesh.

Mesh modification

convertToImportedMesh more

objMesh.convertToImportedMesh(name)

Converts mesh from AToM geometry object into MeshObject which behaves as imported
MeshObject.

deleteEdges1D more

objMesh.deleteEdges1D(edgesToDelete)

Deletes selected edges from 1D Mesh.

deleteMesh more

objMesh.deleteMesh(name)

Deletes selected MeshObject.

deleteNodes more

objMesh.deleteNodes(nodesToDelete)

Deletes selected nodes.

deleteTriangles more

objMesh.deleteTriangles(trianglesToDelete)

Deletes selected triangles from mesh.

meshToPolygon more

objMesh.meshToPolygon(name)

Converts mesh into AToM geometry polygon.

Import/Export

exportMesh more

objMesh.exportMesh(type, name, filePath)

Exports mesh into a file in the selected format.
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import1DMesh more

objMesh.import1DMesh(nodes, connectivityList, name)

Imports 1D mesh from MATLAB matrix.

import2DMesh more

objMesh.import2DMesh(nodes, connectivityList, name)

Imports 2D mesh from MATLAB matrix.

importMesh more

objMesh.importMesh(fileName, name)

Imports mesh from a file in the selected format.

mirrorImportedMesh more

objMesh.mirrorImportedMesh(name, normal, numCopies, origin)

Mirrors imported MeshObject.

renameImportedMesh more

objMesh.renameImportedMesh(currentName, newName)

Renames imported MeshObject.

rotateImportedMesh more

objMesh.rotateImportedMesh(name, rotateAngles, numCopies, origin)

Rotates imported MeshObject.

scaleImportedMesh more

objMesh.scaleImportedMesh(name, scaleVector, numCopies, origin)

Scales imported MeshObject.

translateImportedMesh more

objMesh.translateImportedMesh(name, translateVector, numCopies)

Translates imported MeshObject.

Visualization

plotMesh more

objMesh.plotMesh()

Plots the whole mesh from Mesh object

plotMeshBoundary more

objMesh.plotMeshBoundary()

Plots mesh with highlighted boundaries.

plotMeshCircumsphere more

objMesh.plotMeshCircumsphere()

Plots mesh altogether with its enclosing circumsphere.
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Physics

Physics class enables to define general properties of simulation task like frequency points, sym-
metries and materials for Boundary element method simulation. Every AToM project has its
own Physics model and it is possible to access it in selected project via Command Window by
atom.selectedProject.physics.

4.1 Frequency List

Frequency list can be defined as variable in Workspace. Value of this property can be numerical
vector (row or column) with unique real values. Simulation of defined structure is performed on
frequency points stated herein.

4.2 Symmetry Planes

In AToM is possible to define properties of three symmetry planes: XY, YZ and XZ. When some
symmetry plane is active, it is possible to define just appropriate part of geometry, or whole
geometry (example show on Fig. 4.1). Before meshing the structure, only appropriate part of
geometry (half-space with one positive coordinate, quadrant with two positive coordinates, ...) is
meshed and used for computations. Using symmetries thus saves computational time. Symmetries
are implemented using so-called C-matrices which are introduced in Section 8.3. PEC, PMC and
geometric planes are only special cases of the C-matrix. Possible types of planes are:

� 'none' - symmetry plane is not applied

� 'electric' - PEC wall (Et = 0)

� 'magnetic' - PMC wall (Ht = 0)

� 'geometric' - geometric symmetry

4.3 Materials

Materials model manage predefined and user defined materials for Boundary element method sim-
ulation (Section 5.1). Only non dispersive dielectrics and metals can be specified. Materials are
generally defined by loss tangent and conductivity. Dielectrics and metals are also specified by
permittivity and permeability, respectively.

4.4 Public Methods

getFrequencyListValues

f = physics.getFrequencyListValues()

Return actual frequency list values from Physics model. If the frequency list is invalid, error

27



4.4. PUBLIC METHODS

Figure 4.1: Structure of modified bowtie antenna with two geometry symmetry planes. Main bowtie
shape is drawn entirely, but an ending sheet is drawn on both sides of antenna differently. In the
resulting mesh can be seen (symmetry planes are not shown), that mesh is symmetrized according
to XY and YZ symmetry planes and was computed from geometry in quadrant with positive X
and Z coordinate.

is thrown.

setFrequencyList

physics.setFrequencyList(fListExpression)

Sets frequency list. It is possible to use arbitrary expression as char (e.g., 'linspace(0.1, ...

1, 10)*1e9', '(1:10)*1e8'), or directly numerical vector. Valid value is vector of positive
finite real and unique numbers.

symmetryPlanes.(plane).setType
physics.symmetryPlanes.XY.setType(symmType); physics.symmetryPlanes.YZ.setType(symmType); ...

physics.symmetryPlanes.XZ.setType(symmType)

Sets type of specific plane. symmetryType can be 'none', 'electric', 'magnetic' or
'geometric'.

materials.addDielectric

physics.materials.addDielectric(nameOfMaterial, varargin)

This method add dielectric to material container. First mandatory argument has to be an
unique name of material as char vector. If no more parameter are passed, default material
with vacuum properties is defined (εr = 1, tan δ = 0, σ = 0). All other optional arguments
are name-value pairs, e.g., addDielectric('myMaterial', 'Permittivity', 2.1, ...

'LossTangent', 'tgD', 'Conductivity', '0'). All parameter values can be defined as
workspace variables (as 'tgD' in previous example). If some parameter is not defined, value
from default vacuum is used.

materials.addMetal
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physics.materials.addMetal(nameOfMaterial, varargin)

This method add metal to material container. First mandatory argument has to be an unique
name of material as char vector. If no more parameter are passed, default material with PEC
properties is defined (µr = 1, tan δ = 0, σ = ∞). All other optional arguments are name-
value pairs, e.g., addMetal('myMaterial', 'Permeability', 2, 'LossTangent', ...

'0', 'Conductivity', 'sigmaMetal'). All parameter values can be defined as workspace
variables (as 'sigmaMetal' in previous example). If some parameter is not defined, value
from default PEC is used.

materials.editMedium

physics.materials.editMedium(nameOfMaterial, varargin)

This method allows editing of arbitrary material in physics.material container. First
mandatory argument has in an unique name of material as char vector. All other optional ar-
guments are name-value pairs, e.g., physics.editMedum('myMetal', 'Conductivity', ...

'sigmaMetal', 'Permeability', '1.1'). All parameter values can be defined as workspace
variables (as 'sigmaMetal' in previous example).

materials.getDielectricTable

dielTab = physics.materials.getDielectricTable()

This method returns variable of table class with list of dielectric materials in physics.material

container.

materials.getMetalTable

metalTab = physics.materials.getMetalTable()

This method returns variable of table class with list of metal materials in physics.material

container.

materials.getTable

materialTab = physics.materials.getTable()

This method returns variable of table class with list of all materials in physics.material

container.

materials.removeMedium

physics.materials.removeMedium(materialName)

This method deletes arbitrary material from physics.material container. materialName

is name of material as char vector.

4.5 Public Properties

c0

Return speed of light in vacuum used in AToM for computations. This property is taken
during project creation from public function models.utilities.constants.c0

ep0

Return permittivity of free space used in AToM for computations. This property is taken
during project creation from public function models.utilities.constants.ep0.

gamma

Return Euler–Mascheroni constant used in AToM for computations. This property is taken
during project creation from public function models.utilities.constants.gamma.

mu0

Return vacuum permeability used in AToM for computations. This property is taken during
project creation from public function models.utilities.constants.mu0.
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Figure 4.2: Physics Viewer.

Figure 4.3: Dialogue for plane wave definition.

symmetryPlanes.(plane).type

Return actual type of specific symmetry plane plane, e.g.,planeType = ...

physics.symmetryPlanes.XY.type.

4.6 Physics Viewer

Physics Viewer (Fig. 4.2) is simple GUI, which provides interface for majority of Physics model
methods mentioned above. Physics Viewer is part of Main Viewer and is accessible via Physics tab.

4.7 Feeding

Feeding is model aggregating and managing plane waves and feeders on geometry and mesh. Feeding
is actually property of Physics model and is accessible by atom.selectedProject.physics.feeding.

4.7.1 Plane Waves

In AToM it is possible to define arbitrary number of plane waves, which are irradiating the structure.
Definition of plane waves is possible via dialogue shown in Fig. 4.3. This dialogue is accessible via
Design Viewer, or by right click on Plane Waves under Feeding item from tree in Main ...

Viewer. For physical meaning of plane waves please see Section 5.3. Plane waves are defined by
these properties:

� name - unique identifier of the wave. Name has to be char vector and fulfil MATLAB function
isvarname.
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� propagationVector - cartesian vector defining direction of propagation of plane wave. This
vector can be defined via AToM Workspace as expression of variable, or directly like numerical
vector of size [1× 3]. Default value is [1, 0, 0].

� initElectricField - vector defining direction of electric field in coordinate origin at time
t = 0. It is possible to define this vector as expression of variable in Workspace, or directly
as numerical vector of size [1× 3]. propagationVector and initElectricField has to be
perpendicular to each other. initElectricField can be complex and represents a phasor.
By that it is possible to create plane waves with defined phase shift. In a GUI is shown a real
component of the electric field. Default value is [0, 0, 1].

� axialRatio - axial ratio of plane wave. It is possible to define it as expression of variable in
Workspace, or as numerical scalar. Value Inf stands for linearly polarized wave, and value 1
stands for circularly polarized wave. Values 1 < axialRatio < Inf represents elliptically
polarized wave. Axial ratio is defined as ratio of magnitude of orthogonal components of
electric filed. Generally for elliptically polarized wave it is ratio of magnitude of electric field
in direction of major axis and minor axis. It is assumed that initElectricField represents
direction of major axis. Default value is Inf.

� direction - direction of elliptically polarized wave. Possible values are 'left' and 'right'

for left-handed polarization and right-handed polarization, respectively. Default value is
'right'.

� isEnabled - allow to turn wave excitation on and off. Property can be defined as expression
in Workspace, or directly as logical scalar. Default value is true.

4.7.2 Geometry Discrete Ports

It is possible to define discrete ports directly on 1D or 2D geometry objects before mesh is created.
In case of 1D geometry discrete port is actually single points, which lie on arbitrary geometry
object. Position of the port has to be defined as coordinate of single point lying directly on the
so-called geometry base object. Coordinates of port can be defined in global coordinate system
(numerical vector [1 × 3]) or by parametrized position (see 2 for details). In case of discrete port
on 2D geometry objects, port has always shape of line and is defined by global (numerical matrix
[2×3]) or parametrized position (numerical matrix [2×2]) of start and end point. In all cases, port
has to lie inside geometry object and no part of port can lie outside of the object (e.g., over a hole
in object, between two objects in vacuum, etc.). There are also some logical restrictions, where
port can be located. General rule is, that always has to be clear, what is a direction of applied
delta gap voltage, or more precisely, which part of structure is positive, and which is negative. It
means that port can not lie on the edge of structure (in case when is not part of symmetry plane),
or on the other hand, on intersection of more than two planar objects. And of course, ports can
not intersect each other. See Fig. 4.5 and Fig. 4.6 for port positions examples in AToM Design
Viewer. Example of correct position of port on geometry with symmetry planes is hown in Fig. 4.1.
Port can lie inside symmetry planes and outside of planes in halfspace or quadrant with positive
coordinates. But cutting the port by symmetry plane is forbidden.

When port is defined on the geometry structure, it does not automatically means that the port
will feed the structure. Ports in AToM is meant to be just place, where is created fixed point or
fixed edge, respectively, in computed mesh. To turn on feeding (delta gap feeder) or lumped circuit
on created port requires additional steps. Dialogue for creating discrete port on 2D geometry is
show in Fig. 4.4. Dialogue for adding port on 1D geometry is similar.

Discrete 1D and 2D ports on geometry has these properties:

� number - unique identifier of port. Can be integer scalar only.

� baseObjName - name of geometry base object, where is port connected. It has to be char

vector with name of existing geometry object.
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Figure 4.4: Dialogues for adding discrete port on 2D geometry (left) and triangular mesh (right).
Dialogues are accessible by icon in Design Viewer.

� positionPar - position of port. It is global or parametrized position of single points in case
od 1D port (numerical vector [1× 3], or scalar from open interval (0, 1)), or positions of two
points in case of 2D port (numerical matrix [2 × 3], or [2 × 2], respectively). Position can
be setted as expression of variable in Workspace and during creating the port its position in
relation with base object is checked. Correct position is also checked during changing port
position or base object size/position via Workspace.

� description - description of port as char vector.

There also exists special type of port exclusively intended for BEM (Boundary Element Method,
chapter 5.1). This port is possible to define only on planar 2D structures, which lies in XY plane
only. BEM port has the same properties as 1D and 2D ports mentioned above, and moreover has
property radius, which has to be real positive finite scalar (default value is 1e-4 m).

4.7.3 Mesh Ports

Definition of ports directly on port mesh elements is usually impractical, because you can not
simply define position edges inside meshed structure. But in case of imported mesh, definition of
ports on mesh is the only option. Dialogue for definition of mesh port on triangular mesh is show in
Fig. 4.7 and resulting port is show in Fig. 4.4. Ports defined in 1D or 2D mesh has these properties:

� number - unique identifier of port. Can be integer scalar only.

� elements - numbers of elements, between which is port defined. Numbers of elements are
numbers of mesh triangles in case od 2D mesh, or numbers of mesh edges in case of 1D mesh,
respectively. It is defined as numerical vector of integers with size [1× 2] for 1D mesh, where
the first and second number is number of positive and negative edge, respectively. In case of
2D mesh, elements can be matrix of size [N × 2] where in the first and second column are
numbers of positive and negative elements, respectively.

� description - description of port as char vector.
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Figure 4.5: Example of correct and incorrect discrete 2D port positions. Port n. 3 is incorrect
because it is not clear between which triangles in mesh current should flow. And port n. 5 is on
the edge of geometry, where also current can not flow. On the other hand, ports n. 1, 2 and 4 has
always simple planar part of geometry on both sides, i.e., direction of current it is clear.

Figure 4.6: Example of correct and incorrect discrete 1D port positions. Port n. 1 is correctly
placed on loop antenna, but port n. 2 is placed on the end of loop, which is invalid.

4.7.4 Delta Gap

Integral part of every discrete port is delta gap feeder. Delta gap represents voltage or current
source between specific pairs of triangles in case of 2D geometry (mesh), or between two edges in
case of 1D geometry (mesh). Delta gap is not active by default and it is necessary to turn it on
when needed. Settings of delta gap is possible via the same dialogue, as adding port, and after hit
“Add Port” button settings are accessible (Fig. 4.8). For physical meaning of gelta gaps please see
Section 5.3.

Delta gap feeder has these properties:

� isEnabled - sets if delta gap on port is used for feeding, or not. Value can be directly logical
scalar, or char vector as Workspace expression.

� type - type of delta gap. Possibilities are 'voltage' and 'current'.

� value - actual value of voltage or current source. Value can be directly numeric (finite
complex scalar), or char vector as expression from Workspace.

4.7.5 Lumped Circuits

Integral part of every discrete port is simple lumped circuit. This circuit is always in series with
delta gap and consists of lumped R, L, C and arbitrary user impedance components Zu (see Fig. 4.9).
Lumped circuit itself consists of all components in series, or in parallel circuit. It is possible to set
discrete port in a way, when delta gap is not active and port represents a lumped circuit only. For
physical meaning of lumped circuits please see Section 5.3. Lumped circuit has these properties:
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Figure 4.7: Example of definition mesh port on 2D mesh. Port n. 1 has elements = [26 ...

2;28 20;35 39;40 45]. In the first column are numbers of triangles with positive voltage.

Figure 4.8: Dialogue after adding port enables enabling and editing delta gap and lumped circuit
on port.

� isEnabled - sets if lumped circuit on port is considered, or not. Value can be directly logical
scalar, or char vector as Workspace expression.

� type - type of lumped circuit. Possibilities are 'ser', or 'par' for serial and parallel
arrangement, respectively (see Fig. 4.9).

� R, L, C - value of resistor in Ω, inductance in H and capacitance in F. Value equal to NaN

means that lumped component is disconnected from circuit and is not take into account.

� userImpedance - impedance of user impedance component Zu. This property can be nu-
merical matrix of size [N × 2], or char vector as expression from Workspace. Size N has
to be the same as length of frequency list (Section 4.1) in Physics. The first column rep-
resents impedance of user impedance in Ω, the second column represents derivative of user
impedance with respect to angular frequency. Derivative of impedance is used only in cases
when derivative of impedance matrix is requested from MoM solver. In other cases, fill it,
e.g., with zeros. NaN value means disconnection of user impedance from circuit.
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Figure 4.9: Delta gap is always in series with lumped circuit, but lumped circuit itself can be
serial, or parallel. It is also possible to disable the delta gap (isEnaled = false) and port is then
represented just as lumped circuit. When some element of lumped circuit has to be intentionally
unused, its value has to be NaN. Delta gap is in circuit schematically shown as voltage source, but
can be current source as well, or can be disabled at all.

4.7.6 Public Methods

Model Feeding is accessible by atom.selectedProject.physics.feeding. Several methods of
Feeding use inputParser class for input argument management. It means that input arguments
in propertyName-value pairs style can be significantly simplified. Name of properties can be stated
in shorted form, e.g., 'positionPar' as 'pos', 'userImpedance' as 'u', and case insensitive.
Order of properties is moreover arbitrary and most of properties could be not defined, because have
internally setted default value. Mandatory inputs are further specified.

add1DDiscretePort
feeding.add1DDiscretePort(n, 'baseObjName', objName, 'positionPar', position, ...

'description', portDescription)

Add 1D discrete port (Section 4.7.2) with number n into Feeding model lying on 1D geometry
object objName on position position and description of port is portDescription. All
properties except of 'description' is mandatory to define.

add1DMeshPort
feeding.add1DMeshPort(n, 'elements', portElements, 'description', ...

portDescription)

Add 1D mesh port (Section 4.7.3) with number n into Feeding model lying on mesh node be-
tween two 1D mesh elements (edges) portElements. Description of port is portDescription.
All properties except of 'description' is mandatory to define.

add2DDiscretePort
feeding.add2DDiscretePort(n, 'baseObjName', objName, 'positionPar', position, ...

'description', portDescription)

Add 2D discrete port (Section. 4.7.2) with number n into Feeding model lying on 2D geom-
etry object objName on position position and description of port is portDescription. All
properties except of 'description' is mandatory to define.

add2DMeshPort
feeding.add2DMeshPort(n, 'elements', portElements, 'description', ...

portDescription)

Add 2D mesh port (Section 4.7.3) with number n into Feeding model lying on mesh edge be-
tween 2D mesh elements (triangles) portElements. Description of port is portDescription.
All properties except of 'description' is mandatory to define.

addBEMDiscretePort
feeding.addBEMDiscretePort(n, 'baseObjName', objName, 'positionPar', ...

position, 'radius', portRadius, 'description', portDescription)

Add BEM discrete port (Section 4.7.2) with number n into Feeding model lying on 2D geom-
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etry object objName on position position with virtual radius portRadius and description
of port is portDescription. All properties except of 'description' and 'radius' is
mandatory to define.

addPlaneWave
feeding.addPlaneWave(nameOfWave, 'direction', wavePolDir, ...

'propagationVector', propVec, 'initElectricField', initE, 'axialRatio', ...

axialRatio, 'isEnabled', isEnabled)

Add plane wave named nameOfWave (Section 4.7.1) into Feeding model with propagation
vector propVec, axial ratio axialRatio and polarization direction . Only to define name is
mandatory, rest of properties will have default values.

deletePort

feeding.deletePort(portNumbers)

This method deletes ports with numbers stated in numeric vector portNumbers from Feeding

model.

deleteWave

feeding.deleteWave(nameOfWave)

This method deletes wave with name stated in char vector nameOfWave from Feeding

model.

editFeeder
feeding.editFeeder(portNumber, 'isEnabled', enable, 'type', newType, 'value', ...

newValue)

This method enable editing of feeders (Section 4.7.4 and 4.7.2) on port number portNumber.
Only first input argument is mandatory.

editLumpedCircuit

feeding.editLumpedCircuit(portNumber, 'isEnabled', enable, )

This method enable editing of lumped circuit (Section 4.7.5) on port number portNumber.
Only first input argument is mandatory.

editPort

feeding.editPort(portNumber, 'number', newPortNumber, varargin)

Enable editing of discrete ports (Section 4.7.2 and 4.7.3) in Feeding model. Example stated
above shows editing of port number. In varargin can be rest of propertyName-value pairs
pertaining to specific class of edited port. Only first input argument is mandatory.

editWave

feeding.editWave(waveName, 'name', newWaveName, varargin)

Enable editing of plane waves (Section 4.7.1) in Feeding model. Example stated above shows
editing of wave name. In varargin can be propertyName-value pairs of plane wave. Only
first input argument is mandatory.

getPortValues

portValues = feeding.getPortValues(); portValues = feeding.getPortValues(frequencyList)

Method returns information about all ports which are affecting simulation task, i.e., ports
which has enabled lumped circuit or feeder. It is also possible to set custom frequencies for
lumped circuit impedance computation.

getWaveValues

portValues = feeding.getWaveValues()

Method returns information about all plane waves which are affecting simulation task, i.e.,
waves which are enabled.

4.7.7 Public Properties

table

This property contain list of all components managed by Feeding model.
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Solvers

5.1 BEM

5.1.1 General

It considers an arbitrarily shaped, triple planar circuit having coupling port. Solving the wave
equation over the whole area is reduced into a contour-integral form, which relates the voltage and
current along the periphery.

If the substrate height (z-dimension) will be much smaller than the wavelength, it is possible
to assume that ∂/∂z = 0 and Hz = Ex = Ey = 0. It leads to following equation

V (s) =
1

2j

∮
C

[
k cos (θ) H

(2)
1 (kr)V (s0)− jωµdH

(2)
0 (kr) in (s0)

]
ds0, (5.1)

where H
(2)
0 and H

(2)
1 are the Hankel functions of the first and second kind. This approximation

leads to definition of limitation. The height of substrate d < λ/20, where λ is a wavelength within
the substrate.

Also segment width W should be smaller than λ/10. In other case, user will be informed, that
the results are not valid, using the message “Mesh is poor”. If the periphery is divided into N
segments, that the magnetic and electric field intensities are constant over each width of segments,
the integral equation results in a system of matrix equations

N∑
j=1

uijVj =

N∑
j=1

hijIj (i = 1, 2, ...N) , (5.2)

where

uij = δij −
k

2j

∫
Wj

cos (θ) H
(2)
1 (kr) ds, (5.3)

hij =


ωµd

2
1
Wj

∫
Wj

H
(2)
0 (kr) ds (i 6= j)

ωµd
2

[
1− 2j

π

(
ln
(
kWi

4

)
− 1 + γ

)]
(i = j)

. (5.4)

And his solving leads to obtain the rf voltage on each segment as

V = U−1HI. (5.5)

Then it is possible to show the impedance matrix

Z = U−1H. (5.6)

This matrix is stored in property matrix for other computation in results class.
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5.1.2 Public methods

setSubstrateHeight more

BEM.setSubstrateHeight(height)

Method sets the height of substrate. It is able to use absolute value or some variable from
workspace. Note, that the height of the substrate has to be much smaller than wavelength.

setDielectric more

BEM.setDielectric(dielectric)

Method sets the dielectric part of the substrate using the name of material from the dielectric
database.

setMetal more

BEM.setMetal(metal)

Method sets the metallic part of substrate using of metallic name within materials database.
Both, patch and ground parts, are set as a same metallic material.

solve more

BEM.solve(userFrequency)

Method starts to calculate impedance matrix by Boundary Elements Method using of fre-
quency list from physics class. If user defines specific frequency list to input of method, this
frequency list will be used.

getVoltage more

BEM.getVoltage()

hod is computing both, the voltage on periphery of investigated planar circuit and voltage
on every single port. If the impedance matrix is known and at least one port is feeding the
circuit, the method returns voltage on periphery for all set frequencies.

getPeripherySamples more

BEM.getPeripherySamples

Method returns the (x, y, z) coordinates of samples on periphery, including the periphery of
holes. This data are needed for radiation pattern computing, also for displaying of voltage
on the periphery.

getParametersZ more

BEM.getParametersZ

Method returns mutual z-parameters based on impedance matrix obtained by Boundary
Elements method. If the impedance matrix is not computed yet, comment to command
window warns user, that solving is needed first.

getParametersS more

sParameters = getParametersS(Z0)

Method returns mutual s-parameters based on mutual z-parameters. For driving s-parameters
is need to use computed voltage on ports (using getVoltage method) and also currents on ports
(using getCurrentOnPorts).

getCurrentsOnPorts more

currentOnPorts = getCurrentsOnPorts

Method returns scalar or vector of currents on every single port. These currents is needed
for computing of driving impedance resp. s-parameters.

5.1.3 How to use BEM without AToM

Boundary elements method is possible to use also without AToM session. This kind of using is only
for skilled users. Firstly, it is needed to create initial object of BEM class using models.solvers.BEM.
This object has method initializeSideAccess() which is able to set important parameters for
computing.
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Those parameters are divided to four parts (four structures). First is structure physics, which
carries information about physical constants (as light speed, permittivity, permeability of vacuum,
et.)

Second structure carries information about materials (dielectric and metal). These materials
describe investigated planar structure.

Third input is a height of substrate and the last is a mesh.

initializeSideAccess more

initializeSideAccess(physics, materials, d, mesh)

The method is for initialization of BEM class without AToM session. User has to keep the
structure of inputs needed for computing of the impedance matrix. The method is only for
skilled users!

Geometrical parameters are samples on the periphery of inspected planar circuit. These samples
are in structure mesh.getBoundaryMesh.nodes{1}{1}. If any hole is within this circuit, periphery
of this hole is store into mesh.getBoundaryMesh.nodes{1}{n}. Where n = 2 and for more holes
the increment n is increasing. More details are in example launchBEM.

5.2 MoM1D

MoM1D is a frequency domain solver based on method of moments which can solve current dis-
tribution on three-dimensional wire structures using electric field integral equation (EFIE). It uses
piecewise-linear basis functions. Since most of the properties are the same as in the MoM2D, user
is advised to read the documentation of the MoM2D.

Note that MoM1D does not support lumped elements, derivatives with respect to angular
frequency and other Z-matrix related matrices.
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Figure 5.1: MoM1D Graphical User Interface

5.2.1 Public Properties

All properties can be set using method atom.selectedProject.solvers.MoM1D.setProperties( ...

'prop1Name', prop1Value, 'prop2Name', prop2Value, .. ) or using graphical interface (see
Fig. 5.1). Default values are shown in brackets {}.

nBatchMax

Double: {500}
Maximum amount of data to be processed at once. The value balances speed vs. memory
requirements of the computation. Higher value should speed-up the computations but results
in higher memory requirements. Note that after reaching certain value, the computation time
will not decline any more. Based on observations, there is an optimal value for each system.

nWorkers

Double: {0} .. Inf

Number of parallel workers (threads) to be used. Note that monitoring of progress of parallel
computation will not be frequent in MATLAB versions older than R2017a.
nWorkers == 0: Computation will be performed using single thread only (for-loop).
nWorkers > 0: Computation will be performed using number of threads given by value of
nWorkers (parfor-loop). Parallel Computing Toolbox has to be installed.
nWorkers == Inf: Computation will be performed using preferred number of workers in a
parallel pool set in MATLAB Parallel Computing Toolbox Preferences. Parallel Computing
Toolbox has to be installed.

quadOrder

Double: 1 | {2} | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12

Order of numerical quadrature used for numerical integration. Higher order results in better
precision but enlarges computational time.

resultRequests
String: 'Jx'| 'Jy'| 'Jz'| {'basisFcns'} | 'divJ'| 'iVec'| {'mesh'} | 'vVec'| ...

'zInActive'| 'zInMutual'| {'zMat'}
Selection of requested output quantities of the solver. The list can be obtained using pos-
sibleResultRequests(). You can request multiple results using comma-separated list, spaces
are optional (e.g.'Jx, Jy,Jz').

resultsInFile

40

https://www.mathworks.com/products/parallel-computing.html
https://www.mathworks.com/products/parallel-computing.html
https://www.mathworks.com/products/parallel-computing.html


CHAPTER 5. SOLVERS

Logical: {false}
If set to true, results will be saved into MAT-files.

resultsInRAM

Logical: {true}
If set to true, results will remain in memory.

verbosity

Double: 0 | 1 | {2} | 3

Controls amount of text being typed in the command line.
verbosity == 0: No information will be shown in the command line, no progress bar.
verbosity == 1: Progress bar will be shown.

wireRadius

Double: {1e-5}
Radius of all wire segments in the model.

5.3 MoM2D

MoM2D is a frequency domain solver based on method of moments which can solve current distri-
bution on three-dimensional planar structures using electric field integral equation (EFIE). It uses
the Rao-Wilton-Glisson (RWG) basis functions [?]. The method results in a solution of system of
linear equations formed as

ZI = V. (5.7)

The Z is an impedance matrix. Values of the impedance matrix are given by geometrical properties
of the analyzed structure

zmn =
jZ0

k0

∫
Ωm

∫
Ωn

{
k2

0ψm ·ψn −∇ ·ψm∇′ ·ψn
} e−jk0Rmn

4πRmn
dS′ dS (5.8)

where Z0 is the impedance of free space, k0 is the free space wave-number, ψm,ψn are testing and
basis functions and Rmn is a distance between source and observation point. The matrix can be re-
quested by adding 'zMat' into the list of requests resultRequests. If the 'zMat' is present in the
resultRequests and resultsInRAM is set to true, raw values of the impedance matrix will be avail-
able after successful computation in atom.selectedProject.solvers.MoM2D.results.zMat.data.
Other data respect the same pattern:
myData = atom.selectedProject.solvers.MoM2D.reults.<name>.data.

For modal decomposition, it can be interesting to get just parts of the impedance matrix:
magnetic (M) and electric (E), both of them can be further divided into quasi-static (0) and
dynamic (k) part. Thanks to convenient divergence of the RWG testing/basis functions, we get

zMatMkmn = χm,n

∫
Ωm

∫
Ωn

ψm ·ψn
e−jk0Rmn − 1

4πRmn
dS′ dS (5.9)

zMatM0mn = χm,n

∫
Ωm

∫
Ωn

ψm ·ψn
1

4πRmn
dS′ dS (5.10)

zMatEkmn = χm,n

∫
Ωm

∫
Ωn

e−jk0Rmn − 1

4πRmn
dS′ dS (5.11)

zMatE0mn = χm,n

∫
Ωm

∫
Ωn

1

4πRmn
dS′ dS (5.12)

where

χm,n =

{
lmln
AmAn

, for contributions + +,−−
− lmln
AmAn

, for contributions +−,−+
. (5.13)
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Remaining request related to impedance matrix is 'zMatLE', which is a part related to lumped
elements. Using the requests 'zMatMk', 'zMatM0', 'zMatEk', 'zMatE0' and 'zMatLE', impedance
matrix can be assembled as follows

zMat = jZ0k0 (zMatMk + zMatM0)− jZ0

k0
(zMatEk + zMatE0) + zMatLE. (5.14)

Derivative of the impedance matrix with respect to angular frequency can be obtained using
'zMatD'. It can be also assembled using above mentioned requests and

tMatMmn = χm,n

∫
Ωm

∫
Ωn

ψm ·ψn
e−jk0Rmn

4π
dS′ dS (5.15)

tMatEmn = χm,n

∫
Ωm

∫
Ωn

1

4π
dS′ dS. (5.16)

Using additional requests 'tMatM', 'tMatE' and derivative of the lumped part 'zMatLED', deriva-
tive of the impedance matrix can be assembled in the following way:

zMatD =
jZ0

ω

(
k0 (zMatMk + zMatM0) +

1

k0
(zMatEk + zMatE0)

)
(5.17)

+
Z0

c0

(
k0tMatM− 1

k0
tMatE

)
+ zMatLED. (5.18)

The I (5.7) is an unknown vector of coefficients representing approximation of electric current
density over the analysed structure. The current density is given as

J ≈
N∑
n=1

ψnin (5.19)

where ψn is n-th RWG basis function, in is n-th coefficient of the current density vector and N
is total number of basis functions which is given by number of inner edges of the computational
mesh. Since information about the basis functions can be requested using 'basisFcns' and
coefficients using 'iVec', user is able to evaluate current density distribution at any point of
the geometry. With resultRequests containing (at least) 'mesh, basisFcns, iVec', user can
get the components of the current density and its divergence using getJInPoints() (see Listing 5.1).

Listing 5.1: Obtaining components of the current density.

% ...after solution:
mesh = atom.selectedProject.solvers.MoM2D.reults.mesh.data;
basisFcns = atom.selectedProject.solvers.MoM2D.reults.basisFcns.data;
iVec = atom.selectedProject.solvers.MoM2D.reults.iVec.data;

% obtaining components of the current density
[Jx, Jy, Jz, divJ, pointCoordinates] = ...

models.solvers.MoM2D.computation.getJInPoints(...
mesh, basisFcns, iVec);

In order to evaluate the quantities in centers of each triangle, user can just add requests 'Jx',
'Jy', 'Jz' or 'divJ' into the resultRequests. See Section 5.3.1 for list of possible result requests.

The V in (5.7) is a known excitation vector

vm =

∫
Ωm

ψm (r) ·Ei (r) dS. (5.20)

Its values can be requested by adding 'vVec' into the list of requests resultRequests (see Sec-
tion 5.3.1).

The solver also provides active impedance on delta-gap ports 'zInActive' and mutual impedances
between ports 'zInMutual'. Note that at least one valid delta-gap source must be defined in order
to compute zInActive and at least two delta-gaps to compute zInMutual.
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Figure 5.2: MoM2D Graphical User Interface

5.3.1 Public Properties

All properties can be set using method atom.selectedProject.solvers.MoM2D.setProperties( ...

'prop1Name', prop1Value, 'prop2Name', prop2Value, .. ) or using graphical interface (see
Fig. 5.2). Default values are shown in brackets {}.

nBatchMax

Double: {500}
Maximum amount of data to be processed at once. The value balances speed vs. memory
requirements of the computation. Higher value should speed-up the computations but results
in higher memory requirements. Note that after reaching certain value, the computation time
will not decline any more. Based on observations, there is an optimal value for each system.

nWorkers

Double: {0} .. Inf

Number of parallel workers (threads) to be used. Note that monitoring of progress of parallel
computation will not be frequent in MATLAB versions older than R2017a.
nWorkers == 0: Computation will be performed using single thread only (for-loop).
nWorkers > 0: Computation will be performed using number of threads given by value of
nWorkers (parfor-loop). Parallel Computing Toolbox has to be installed.
nWorkers == Inf: Computation will be performed using preferred number of workers in a
parallel pool set in MATLAB Parallel Computing Toolbox Preferences. Parallel Computing
Toolbox has to be installed.

quadOrder

Double: 1 | {2} | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12

Order of numerical quadrature used for numerical integration. Higher order results in better
precision but enlarges computational time.

resultRequests
String: 'Jx'| 'Jy'| 'Jz'| {'basisFcns'} | 'divJ'| 'iVec'| {'mesh'} | 'tMatE'| ...

'tMatM'| 'vVec'| 'zInActive'| 'zInMutual'| {'zMat'} | 'zMatD'| 'zMatE0'| 'zMatEk'| ...

'zMatLE'| 'zMatLED'| 'zMatM0'| 'zMatMk'

Selection of requested output quantities of the solver. The list can be obtained using pos-
sibleResultRequests(). You can request multiple results using comma-separated list, spaces
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are optional (e.g.'Jx, Jy,Jz').

resultsInFile

Logical: {false}
If set to true, results will be saved into MAT-files.

resultsInRAM

Logical: {true}
If set to true, results will remain in memory.

verbosity

Double: 0 | 1 | {2} | 3

Controls amount of text being typed in the command line.
verbosity == 0: No information will be shown in the command line, no progress bar.
verbosity == 1: Progress bar will be shown.
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Generalized Eigenvalue Problem
Solver

Generalized Eigenvalue Problem Solver (GEP Solver) provide solution of generalized eigenvalue
problem

AIn = λnBIn (6.1)

with normalization to
1

2
IH
mNIn = δmn, (6.2)

where A and B are input matrices, N is normalization matrix, λn represent the resulting eigen-
numbers, In corresponding eigen-vectors and δmn is Kronecker delta. Superscript H denotes Her-
mitian transpose. For example for characteristic modes A = X and B = N = R, where X and R
is imaginary and real part of impedance matrix, respectively. Input matrices should, according the
theory [?], be symmetric, i.e., A = AT and B = BT.

The range of eigen-values λn ∈ (−∞,∞) is too wide. It is plotted typically as log10 |λn| or the
characteristic angle (eigen-angle) was defined for better resolution

δn = 180◦ − arctan (λn) , (6.3)

which maps the eigenvalues into the limited range δn ∈ (90◦, 270◦) with resonance λn = 0 corre-
sponding to δn = 180◦.

The MATLAB has two functions for eigen-values and eigen-vectors computation, GEP Solver
is based on them:

� eig: Use QZ algorithm (non-symmetrical matrices) or Choleski factorization (symmetrical
matrices). [more in MATLAB documentation]

� eigs: Use Arnoldi package (ARPACK) to compute subset of eigen-values and eigen-vectors.
[more in MATLAB documentation]

6.1 Tracking

The tracking problem appeared when eigen-values of modes are computed over frequency range,
especially with more complex geometries (as compared with wired structures). The order of modes
might be switched. Tracking algorithm is used to reorganize mode order over frequency range
to get continuous eigen-value curves. Several tracking algorithms can be found, for example, in
[?, ?, ?, ?, ?].

The principle of correlation based algorithm is illustrated in Fig. 6.1. The correlation table
ρmn is computed for each eigen-vector at f1 and all eigen-vectors at f2. The highest correlation
value, if the similarity is higher than set constant (typically |ρmn| ≥ 0.8) connect the m-th mode
at f1 with n-th mode at f2. In case there is not sufficient correlation value, tracking has failed.
It could happen for several reasons. First is number of modes given to ARPACK to search for.
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Loop: frequencies
i = 1 : Nfreq − 1

INPUTS:
untracked λn, In

Corr. table ρfi→fi+1

Loop: modes
m = 1 : Nmodes

∃ n :
|ρm,n| ≥ 0.8

track mode mfi

to mode nfi+1

m == Nmodes

Are all modes
tracked?

i == Nfreq − 1
OUTPUTS:

tracked λn, In

End mode mfi

Start new mode nfi+1

m = m+ 1

i = i+ 1

no

yes

no

yes

no

yes

no yes

Figure 6.1: Tracking algorithm

When only the first several modes are required, it is possible, that at higher frequency the smallest
eigen-values have different modes. Other reason could be a high gradient of the eigen-value (that
is a reason, why large eigen-values are filtered in pre-processing). The algorithm can fail at higher
frequency for insufficiently dense mesh, because these modes can have more complex surface current
distributions.

Once all modes between frequencies f1 and f2 are connected or unconnected, modes are ended
and new modes are opened, the algorithm moves to next frequencies f2 and f3. When it is finished
connecting between frequencies fNfreq−1 and fNfreq

, post-processing part is applied to tracked data.

6.1.1 Correlation Computing

Formulations for correlations are in detail described in [?]. Three types of correlation implemented
in AToM are:

� Eigen-vector correlation

ρmn =
IT
mIn

|Im| |In|
(6.4)
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� Modal radiated power

ρmn = Prad =
1

2
IT
mRIn (6.5)

� Far-field correlation [?]

ρmn =
1

2Z0

∫
S2

E∗m(r) ·En(r) dS (6.6)

Modal far-field can be computed as

En(r) = −jkZ0
e−jk|r|

4π |r|

∫
Ω

(
Jn(r′)−

(
Jn(r′) · n̂

)
n̂
)

ejkn̂·r′
dS, (6.7)

where n̂ denotes the unit vector from source point on surface r′ to observed point r, Jn is
eigen-current, Z0 is impedance of free space, Ω denote antenna’s surface and S2 represents
unit sphere.

6.2 Adaptive Frequency Solver

The adaptive frequency solver was implemented as an additional “output analyzing” algorithm to
increase precision of tracking.

At first the pre-processing is applied to computed eigen-vaules and eigen-vectors at originally
given frequency samples — all modes with large eigen-values (typically |λn| ≥ 106) are discarded
as they have very small influence to the resonance. After that the main part of tracking algorithm
is launched and than post-processing part with tracked data follows:

� Opened modes are checked with all previously closed modes if they can be connected. Cor-
relation tables are computed between these modes and if the correlation is sufficient, modes
are joined (with a gap in the middle of them).

� Short modes (typically with the length over only one or two frequency samples) are discarded
— they are not interesting for the wideband frequency range.

� Modes running out of the resonance area (typically with eigen-angle δn out of range [120◦, 240◦])
are discarded — they are not interesting for resonating structure.

These procedures serve to make the resulting data more transparent. Note that all properties
mentioned above are optional and can be controlled by user. The constants can be changed too.

After this one iteration of the tracking algorithm, the detecting algorithm of AFS is initialized.
The tracked data are analyzed and it is decided, where the frequency range should be densed and
new frequency samples are inserted here. At this new frequencies is inner solver computed again
and eigen-values and eigen-vectors are decomposed. New results are placed at correct position
between the older one and are re-tracked together. Number of AFS iterations is chosen.

The deciding criteria when insert more points between frequencies fi and fj can be:

� Resonance – if mode’s track crossed value of δn = 180◦ between fi and fj .

� Gap in mode – if the mode has a gap at one of frequencies fi, fj .

� End of Mode – if the mode ends at fi.

� Start of Mode – it the mode starts at fj .

� Crossing of modes – if any traces of two modes are crossed between fi and fj .

The scheme of AFS algorithm is illustrated in Fig. 6.2.
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INPUTS:
f1, iIter = 1

Set frequency
fiIter

Inner solver
run one iteration

iIter == 1

Tracking over
all frequencies

iIter == nIter

Analyze AFSgoals
Find new frequencies

Num. of new
freq. == 0

Assign results
at fiIter to previously

computed one

OUTPUTS:
λn, In

iIter = iIter + 1

New frequencies
fiIter

no

yes

no

yes

no yes

Figure 6.2: Algorithm of Adaptive Frequency Solver (AFS).

6.3 Public Functions

All functions described below are static functions and can be called without using AToM. They are
located at GEP namespace.

Complete syntax is outputs = models.solvers.GEP.functionName(inputs).

assignEigNumbers more

[assignedEigVec, assignedEigNum] = assignEigNumbers(eigVec, eigNum, ...

modesTrack, gepOptions)

Assign eigen-numbers to modes track.

computeAlpha more

alpha = computeAlpha(Vi, eigVec, eigNum)

Compute matrix of alpha coefficients.

computeBeta more

beta = computeBeta(Vi, eigVec, eigNum)

Compute matrix of beta coefficients.

computeCorrelation more

corrTable = computeCorrelation(vec0, VEC1)

Compute correlation of eigen-vectors.

computeCorrelation2D more

corrCoeff = computeCorrelation2D(a, b)

Compute correlation of 2D matrixes.
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computeCorrTable more

[corrTable, corrInputData] = computeCorrTable(eigVec, corrInputData, ...

gepOptions, corrTable, statusWindow)

Compute correlation table between eigen-vectors. General function deciding which core for
correlation table computing will be used.

computeCorrTableFF more

[corrTable, corrInputData] = computeCorrTableFF(eigVec, corrInputData, ...

gepOptions, corrTable, statusWindow)

Compute correlation table using correlation between far-field of modes.

computeCorrTableII more

[corrTable, corrInputData] = computeCorrTableII(eigVec, corrInputData, ...

gepOptions, corrTable, statusWindow)

Compute correlation table using correlation between eigen-vectors.

computeCorrTableIRI more

[corrTable, corrInputData] = computeCorrTableIRI(eigVec, corrInputData, ...

gepOptions, corrTable, statusWindow)

Compute correlation table using surface correlation.

computeFF more

farFields = computeFF(eigVec, mesh, basisFcns, frequencyList, theta, phi, ...

gepOptions, FF, statusWindow)

Compute modal far-fields.

computeModalExcitation more

modalE = computeModalExcitation(Vi, eigVec)

Compute matrix of modal excitation factors.

computeModalQ more

modalQ = computeModalQ(frequencyList, eigNum)

Compute matrix of modal excitation factors.

computeModalSignificance more

modalS = computeModalSignificance(eigNum)

Compute matrix of modal significance factors.

computePiFactor more

PiFac = computePiFactor(IorJ, eigNum, mesh, basisFcns)

Compute matrix of Pi factors.

connectModes more

modesTrack = connectModes(eigVec, modesTrack, gepOptions)

Connect interrupted modes.

delNegValues more

M = delNegValues(M)

Delete negative eigen-values of matrix.

discardModes more

[eigVec, eigNum] = discardModes(eigVec, eigNum, modesTrack, gepOptions)

Discard modes according to specification in options.

findMaxUsedModeNumber more

maxUsedModeNumber = findMaxUsedModeNumber(modesTrack)

Find max used mode number in given modesTrack matrix.

gep more

[eigVec, eigNum, INI] = gep(A, B, N, gepOptions)

Solve Generalized Eigenvalue Problem.

getOption more

value = getOption(optionsStruct, optionName)

Return value of required option from options structure.
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prepareResultStruct more

res = prepareResultStruct(description, dimensions, freqDepDim, units, data)

Prepare structure for results.

procgep more

[eigVec, eigNum] = procgep(A, B, N, gepOptions)

Solve Generalized Eigenvalue Problem with pre and post processing.

scanModesProperties more

modesProp = scanModesProperties(modesTrack, gepOptions)

Return modes properties from given modesTrack.

solve more

solve(objGEP, frequencyList)

Run GEP Solver.

symmetrizeMatrix more

symA = symmetrizeMatrix(A)

Make the matrix symmetric.

trackingCM more

[outStruct, corrInputData] = trackingCM(eigVec, eigNum, corrInputData, ...

gepOptions, corrTable, statusWindow)

Track modes between 2 frequency samples.

6.4 Public Methods

List of public method which can be evaluated on GEP object. GEP object can be obtained as
objGEP = atom.selectedProject.solver.GEP.

clearInputs more

objGEP.clearInputs()

Clear input matrices, frequency list and inner solver object.

clearOutputs more

objGEP.clearOutputs()

Clear all outputs in results structure.

defaultControls more

defControls = objGEP.defaultControls(innerSolver)

Provide structure of control handles for given inner solver.

getDefaultProperties more

defaultProperties = objGEP.getDefaultProperties()

Return structure of default GEP properties.

getPropertyList more

propertyList = objGEP.getDefaultProperties()

Return names of properties.

resetPropertiesToDefault more

objGEP.resetPropertiesToDefault()

Reset properties of GEP to default values.

setCorrInputData more

objGEP.setCorrInputData(corrInputData)

Set corrInputData to GEP properties.

setFrequencyList more

objGEP.setFrequencyList(frequencyList)

Set list of frequencies to GEP properties.
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setMatrix more

objGEP.setMatrix(nameOfMatrix, matrix)

Set data to given input to GEP properties.

setMatrixA more

objGEP.setMatrixA(A)

Set A as matrixA to GEP properties.

setMatrixB more

objGEP.setMatrixB(B)

Set B as matrixB to GEP properties.

setMatrixN more

objGEP.setMatrixN(N)

Set N as matrixN to GEP properties.

solve more

objGEP.solve(frequencyList)

Solve GEP.

updateResult more

objGEP.updateResult(result, newData)

Update new data to given result of GEP.

6.5 Public Properties

All properties can be set using method atom.selectedProject.solvers.GEP.setProperties( ...

'prop1Name', prop1Value, 'prop2Name', prop2Value, .. ). Default values are shown in
brackets {}.

All properties can be readed from structure atom.selectedProject.solvers.GEP.options;.
This structure with default values is created in constructor of GEP object and updated at very
beginning of method solve with changes made by user.

6.5.1 General

showStatusWindow

Logical: {true}
Show status window during calculation of solver.

verbosity

Double: 0 | {1} | 2

Write progress into command line.
verbosity == 0: No information in command line.
verbosity == 1: Basic information in command line.
verbosity == 2: Detailed information in command line.

6.5.2 Pre-processing

delNegValuesOfInputMatrices

Logical: {false}
Decompose input matrices with eig and discard negative eigen-numbers.

symmetrizeInputMatrices

Logical: {false}
Symmetrize input matrices as M = 1/2 * (M + M.').
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6.5.3 GEP

innerSolver

String: 'empty'| 'custom'| 'CMs (MoM1D)'| {'CMs (MoM2D)'} | 'CMs (MoM2D + Smatrix)'

Name of predefined inner solver or custom.

innerSolverHndl

String: {'MoM2D'}
Name of other AToM solver or string with handle function which return object of custom
inner solver. See Section 6.7 for more details.

innerSolverSolve
String: {'@(objInnerSolver, frequencyList, waitBar)objInnerSolver.solve(frequencyList, ...

waitBar)'}
String with handle function which define how to solve inner solver at given frequencies.

innerSolverGetA

String: {'@(objInnerSolver)imag(objInnerSolver.results.zMat.data)'}
String with handle function which define how to get matrix A from inner solver.

innerSolverGetB

String: {'@(objInnerSolver)real(objInnerSolver.results.zMat.data)'}
String with handle function which define how to get matrix B from inner solver.

innerSolverGetN

String: {'@(objInnerSolver)NaN'}
String with handle function which define how to get matrix N from inner solver. When N is
empty or NaN, N = B is used for normalization, it is not necessary to duplicate same matrices
in N and B.

matricesStorage

String: {'ram'} | 'hdd'

System how to input matrices for GEP are computed.
matricesStorage == 'ram': All matrices are stored in memory.
matricesStorage == 'hdd': Each frequency sample is computed separately and stored in
.mat file in folder which is created by solver. Note that only corrType = 'II' is allowed in
this mode mode.

nModes

Double: {10}
Number of modes computed by eigs. When nModes == 0, eig is computed.

normConst

Double: {0.5}
Normalized constant c used in (6.2) as c * I * N * I = 1.

eigRunPreAndPostprocessing

Logical: {false}
Determine if functions defined in eigPreprocessing and eigPostprocessing are executed
before/after eigs is called.

eigPreprocessing

String: {'@(data, iFreq, objGEP)myPreprocFcn(data, iFreq, objGEP)'}
String with handle function which is executed before eigs is called. See Section 6.7 for more
details.

eigPostprocessing
String: {'@(eigVec, eigNum, iFreq, objGEP, dataFromPreproc)myPostprocFcn(eigVec, ...

eigNum, iFreq, objGEP, dataFromPreproc)'}
String with handle function which is executed after eigs is called. See Section 6.7 for more
details.
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6.5.4 Post-processing

discardNegativeINI

Logical: {false}
Discard modes with INI < 0.

discardComplexLambda

Logical: {true}
Discard modes with complex eigen-number.

maxMagnEigVal

Double: {1e6}
Maximal value of eigen-number, abs(eigNum)> maxMagnEigVal is considered as inf.

6.5.5 Tracking

corrType

String: {'II'} | 'IRI'| 'FF'| 'custom'| 'none'

Type of used computation of correlation table.

corrDataHndl

String: {'@(objGEP)myCorrInputData(objGEP)'}
String with handle function which return correlation input data for custom computation of
correlation table. See Section 6.7 for more details.

corrTableHndl
String: {'@(eigVec, corrInputData, gepOptions, corrTable, ...

statusWindow)myCorrTable(eigVec, corrInputData, gepOptions, corrTable, ...

statusWindow)'}
String with handle function which return custom correlation table. See Section 6.7 for more
details.

minCorrValue

Double: {0.8}
Minimal correlation value for modes connecting.

minModeLength

Double: {1}
Minimal length of mode after tracking. Shorter modes are discarded.

maxLengthOfGap

Double: {5}
Maximal length of gap in mode (in number of freq. samples). Modes with larger gap are
splitted into two modes.

charAngleBoundaryTop

Double: {270}
Modes with eigen-angle running above this level are discarded.

charAngleBoundaryBottom

Double: {90}
Modes with eigen-angle running under this level are discarded.

charAngleBoundarySwitch

Logical: {true}
Discard modes with eigen-angle switching between values above charAngleBoundaryTop and
below charAngleBoundaryBottom.

6.5.6 AFS

AFSnIterations

Double: {1}
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Number of iterations of solver. When AFSnIterations = 1, no adaptive features are used.

AFSnInsertedSamples

Double: {3}
Number of inserted samples between two freq. samples.

AFSinsertedSamplesHandle

String: {'@(f1, f2, n)f1+(1:n)* (1/(n+1))* (f2 - f1)'}
String with handle function where are defined distribution of n inserted samples between
frequencies f1 < f2.

AFSgoal

String: {''} | 'resonance'| 'crossing'| 'startOfMode'| 'endOfMode'| 'gapInMode'

Rules, where are inserted new samples. More goals can be defined as comma separated string.

AFSregionBoundaryTop

Double: {270}
Top level for defining of region, where AFS goals conditions are decided.

AFSregionBoundaryBottom

Double: {90}
Bottom level for defining of region, where AFS goals conditions are decided.

AFSresultsAtGivenSamples

Logical: {true}
Final results are returned only at given samples. Inserted samples are discarded, but the
tracking is preserved.

6.6 How to use GEP

GEP Solver can be controlled as part of AToM package (using GUI or commands in Command Line)
or GEP can be created as standalone object without need to have AToM object (see Section 6.8
further). The GEP Solver requires frequency and mesh to be set before. Next lines are about using
GEP with AToM.

All followed settings can be set using AToM GUI, interface of the GEP Solver is shown in
Fig. 6.3. How to prepare simple task with a dipole for the GEP Solver is stated in Listing 6.1.

Listing 6.1: Prepare task with dipole for GEP Solver.

% start AToM and create project
atom = Atom.start(false);
atom.createProject('atomStart');
% set frequency list
frequencyList = (1:0.2:8)*1e8;
atom.selectedProject.physics.setFrequencyList(frequencyList);
% create dipole
atom.selectedProject.geom.addRectangle('[0 0 0]', '1', '1/20', 'z', 'Dipole1');
% get mesh
atom.selectedProject.mesh.getMesh;

Now it is possible to run GEP Solver. In default state is defined to compute characteristic
modes with MoM2D as inner solver thus GEP can be started by clicking on Solve button or by
command atom.selectedProject.solver.GEP.solve.

The Status window (SW), see Fig. 6.4, shows the progress of GEP computations. Actual results
are displayed in the axes of SW at the end of each iteration. One can switch between showing eigen-
angles or eigen-numbers and current axes can be separated in new window.
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(a) Main settings and controls. (b) Advance properties settings.

Figure 6.3: GUI of GEP Solver. Basic properties mentioned in Section 6.5 can be set in main
window, the rest in Advance properties window.
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Figure 6.4: GEP Status Window

6.6.1 Results

Results of GEP are provided in results = atom.selectedProject.solver.GEP.results; as
a structure with this fields:

� eigNum: Eigen-numbers are broken down to two fields:

– sorted: sorted eigen-numbers after tracking,

– unsorted: untracked raw eigen-numbers computed by eig/eigs.

� eigVec Eigen-vectors are broken down to two fields:

– sorted: sorted eigen-vectors after tracking,

– unsorted: untracked raw eigen-numbers computed by eig/eigs.

� iterNumberAFS: Vector of numbers denoting in which AFS iteration the sample were com-
puted.

� modesTrack: It denotes on which position the sorted modes were originally computed in
unsorted data.

� corrTable: Correlation table serving to track the modes.

6.6.2 Setting of properties

All properties listed above in Section 6.5 can be set using GEP Solver’s method setProperties.
How to set, for example, number of computed modes to 20 and use far-field correlations (Sec-
tion 6.1.1) is demonstrated in Listing 6.2.
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(a) Iteration 1 of AFS. (b) Iteration 2 of AFS. (c) Iteration 3 of AFS.

Figure 6.5: Cutouts of GEP status Window showing gradual refinement around resonance using
AFS option of GEP.

Listing 6.2: Set properties to GEP Solver.

atom.selectedProject.solver.GEP.setProperties(...
'nModes', 20,...
'corrType', 'FF');

atom.selectedProject.solver.GEP.solve;

6.6.3 Run AFS

The AFS (Section 6.2) can be run easily by set property AFSnIterations > 1. Concurrently it
is necessary to set a goal evaluated by AFS. It is appropriate to set resonance goal for the dipole
from Listing 6.1. Number of inserted samples was changed to two.

Listing 6.3: Run AFS in GEP Solver.

atom.selectedProject.solver.GEP.setProperties(...
'AFSnIterations', 3,...
'AFSgoal', 'resonance',...
'AFSnInsertedSamples', 2);

atom.selectedProject.solver.GEP.solve;

Sequence of figures in Fig. 6.5 show gradual refinement around resonance (δn = 180◦).

6.6.4 Using S-matrix decomposition

Using S matrix [?] (more in Section 8.1) leads to more accuracy and it allows to compute modes
of higher order. To apply this method in GEP is necessary to implement additional function into
solver. How to do that is described in Section 6.7, however for standard decomposition with X
matrix as input A and S matrix as input B is pre-deffined setting of property innerSolver = ...

'CMs (MoM2D + Smatrix)'.

6.7 Customization

The GEP Solver can be customized by user-defined functions thus GEP Solver can be used for
arbitrary problem. Only limitation is to keep up given inputs and outputs.

6.7.1 Customize Inner Solver

When property innerSolver == 'custom', another five properties have to be set properly:

� innerSolverHndl (go to →),

� innerSolverSolve (go to →),

� innerSolverGetA (go to →),
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� innerSolverGetB (go to →),

� innerSolverGetN (go to →).

innerSolverHndl

Property innerSolverHndl has to contain a string with handle function which create inner solver
or name of other solver in AToM. This function is called once at beginning of GEP Solver.

Inputs

� objGEP: object of GEP class. GEP has references for Workspace, Solvers, etc. when it
is used with AToM.

Outputs

� objInnerSolver: created object of inner solver. Can be structure too.

Examples

� innerSolverHndl = 'MoM2D': Name of AToM solver.

� innerSolverHndl = '@(objGEP)objGEP.solver.MoM2D': Alternative enrollment of
command above.

� innerSolverHndl = ['@(objGEP)models.solvers.GEP.customFunctions.'...

'solverSMatrixDecomposition(objGEP)']: Static function is used to create inner
solver. Example of that function is in Listing 6.4.

Listing 6.4: Custom static function is used to create inner solver.

function mySolver = solverSMatrixDecomposition(objGEP)
%% solverSMatrixDecomposition create solver for SMatrix decomposition
% This function create solver when S matrix is used for
% computing characteristic modes.

% MoM2D of AToM is used
mySolver.solver = objGEP.solver.MoM2D;
% alocate field for results
mySolver.S = [];
mySolver.X = [];
mySolve.mesh = [];
end

innerSolverSolve

Property innerSolverSolve has to contain a string with handle function which run the inner solver
on given frequencies. This function is called once at every iteration of AFS.

Inputs

� objSolver: object of inner solver.

� frequencyList: list of frequencies.

� waitbar: reference to waitbar in GEP Status Window.

Outputs
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� objSolver: Function can have one output – inner solver or the function can be without
any output.

Examples

� innerSolverSolve = ['@(objInnerSolver, frequencyList,waitBar)'...

'objInnerSolver.solve(frequencyList, waitBar)']: For example, MoM2D can
be called this way.

� innerSolverSolve = ['@(objInnerSolver, frequencyList, waitbar)'...

'models.solvers.GEP.customFunctions.solveSMatrixDecomposition('...

'objInnerSolver, frequencyList, waitBar)']: Static function is used to solve
inner solver. Example of that function is in Listing 6.5.

Listing 6.5: Custom static function is used to solve inner solver.

function objSolver = solveSMatrixDecomposition(objSolver, frequencyList, waitBar)
%% solveSMatrixDecomposition run solver for SMatrix decomposition
% This function run custom inner solver in GEP when S matrix is used for
% computing characteristic modes.

%% solve MoM2D
objSolver.solver.solve(frequencyList, waitBar);

%% constants
nFrequencies = length(frequencyList);
mesh = objSolver.solver.results.mesh;
basisFcns = objSolver.solver.results.basisFcns;
maxDegreeL = 20;
maxAlpha = 2 * maxDegreeL * (maxDegreeL + 2);

%% compute S
S = nan(maxAlpha, basisFcns.nUnknowns, nFrequencies);
for iF = 1:nFrequencies

S(:, :, iF) = models.utilities.matrixOperators.SMatrix.computeS(mesh,...
basisFcns, frequencyList(iF), maxDegreeL);

end

%% save for outputs
objSolver.S = S;
objSolver.X = imag(objSolver.solver.results.zMat.data);
objSolver.mesh = mesh;
end

innerSolverGetA

Property innerSolverGetA has to contain a string with handle function to get input matrix A from
inner solver to input for GEP.

Inputs

� objSolver: object of inner solver.

Outpus

� A: Matrix A.

Examples
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� innerSolverGetA = '@(objSolver)imag(objSolver.results.zMat.data)': Imag-
inary part of impedance matrix. Used when characteristic modes are computed.

� innerSolverGetA = '@(objSolver)objSolver.X': Used when S-matrix is used in
decomposition.

innerSolverGetB

Property innerSolverGetB has to contain a string with handle function to get input matrix B from
inner solver to input for GEP.

Inputs

� objSolver: object of inner solver.

Outpus

� B: Matrix B.

Examples

� innerSolverGetB = '@(objSolver)real(objSolver.results.zMat.data)': Real
part of impedance matrix. Used when characteristic modes are computed.

� innerSolverGetB = '@(objSolver)objSolver.S': Used when S-matrix is used in
decomposition.

innerSolverGetN

Property innerSolverGetN has to contain a string with handle function to get normalized matrix
N from inner solver to input for GEP. Can return NaN, when N = B to avoid duplication of matrix
B in memory.

Inputs

� objSolver: object of inner solver.

Outpus

� N: Matrix N.

Examples

� innerSolverGetN = '@(objSolver)real(objSolver.results.zMat.data)': Real
part of impedance matrix is duplicated in memory.

� innerSolverGetN = NaN: matrix B is used for normalization but it is not stored in
memory twice.

6.7.2 User-defined eig/eigs preprocessing and postprocessing

When are input matrices A and B computed, modal decomposition by eig or eigs follows. In some
cases can be useful to include intermediate step. Setting of property eigRunPreAndPostprocessing ...

= true allows to specify two functions – eigPreprocessing (go to →) and eigPostprocessing

(go to →) – which are executed before and after modal decomposition, respectively.
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eigPreprocessing

Property eigPreprocessing has to contain a string with handle function which is executed before
eig/eigs on each frequency sample.

Inputs

� data: structure with fields A, B and N containing input matrices.

� iFreq: number of actual frequency sample.

� objGEP: object of GEP Solver.

Outpus

� data: structure with fields A, B and N containing modified input matrices.

� dataForPostproc: arbitrary variable which allows to pass any data to post-processing
function.

Examples

� eigPreprocessing = ['@(data, iFreq, objGEP)models.solvers.GEP.'...

'customFunctions.preEigSMatrixDecomposition(data, iFreq, objGEP)']: Pre-
processing function, example can be seen in Listing 6.6.

Listing 6.6: Pre-processing function used by GEP with S-matrix decomposition.

function [data, dataForPostproc] = preEigSMatrixDecomposition(data, ~, ~)
%% preEigSMatrixDecomposition is used as pre-eigs function
% This function is called before eig/eigs when S matrix is used for
% computing characteristic modes and input matrices are pre-processed here.

%% computed data from inner solvers
X = data.A;
S = data.B;
nCMmax = min(size(S));

%% svd decompostion
[SvecU, Ssvd, SvecV] = svd(S);
Ssvd square = Ssvd(1:nCMmax,1:nCMmax);

%% SVD-representation of the problem
Xq = SvecV.'*X*SvecV;

%% Model-order reduction:
X11 = Xq(1:nCMmax, 1:nCMmax);
X12 = Xq(1:nCMmax, nCMmax+1:end);
X21 = Xq(nCMmax+1:end, 1:nCMmax);
X22 = Xq(nCMmax+1:end, nCMmax+1:end);

%%
RU1 = Ssvd square*Ssvd square.';
XU1 = X11 - X12*(X22\X21);

%% save data
data.A = XU1;
data.B = RU1;
dataForPostproc.X21 = X21;
dataForPostproc.X22 = X22;
dataForPostproc.SvecV = SvecV;
end
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eigPostprocessing

Property eigPostprocessing has to contain a string with handle function which is executed after
eig/eigs on each frequency sample.

Inputs

� eigVec: computed eigen-vectors.

� eigNum: computed eigen-numbers.

� iFreq: number of actual frequency sample.

� objGEP: object of GEP Solver.

� dataFromPreproc: data computed in pre-processing function.

Outpus

� eigVec: modified eigen-vectors.

� eigNum: modified eigen-numbers.

Examples

� eigPreprocessing = ['@(eigVec, eigNum, iFreq, objGEP, dataFromPreproc)'...

'models.solvers.GEP.customFunctions.postEigSMatrixDecomposition(eigVec,'...

'eigNum, iFreq, objGEP, dataFromPreproc)']: Post-processing function, exam-
ple can be seen in Listing 6.7.

Listing 6.7: Post-processing function used by GEP with S-matrix decomposition.

function [eigVec, eigNum] = postEigSMatrixDecomposition(eigVec, eigNum, ~, ~, ...
dataFromPreproc)

%% postEigSMatrixDecomposition is used as post-eigs function
% This function is called after eig/eigs when S matrix is used for
% computing characteristic modes and eigen-vectors and eigen-numbers are
% postprocessed here.
%

% computed data from inner solver
X21 = dataFromPreproc.X21;
X22 = dataFromPreproc.X22;
SvecV = dataFromPreproc.SvecV;

% recalculate eigVec
eigVec = SvecV * [eye(size(eigVec, 1)); - X22\X21] * eigVec;
end

6.7.3 Customize Correlation Table

Two handle function for customization of correlation table can be set to properties corrDataHndl
and corrTableHndl if is set corrType == 'custom'.

corrDataHndl

Property corrDataHndl has to contain a string with handle function which is executed during inner
solver processing. Arbitrary data for correlation table ocmputation can be stored.

Inputs
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� objGEP: object of GEP Solver.

Outpus

� corrInputData: modified eigen-vectors.

Examples

� corrDataHndl = '@(objGEP)myCorrInputData(objGEP)': Arbitrary data can be
obtained from GEP object and stored in variable corrInputData (typically in structure
form). This variable is not processed, it is only handed down into custom function for
correlation table.

corrTableHndl

Property corrTableHndl has to contain a string with handle function which is computing correla-
tion table between eigenvectors.

Inputs

� eigVec: computed eigen-vectors in GEP.

� corrInputData: data computed in inner solver.

� gepOptions: structure wit GEP settings.

� corrTable: correlation table (correlation table computed in previous AFS iteration.).

� statusWindow: GEP Status window.

Outpus

� corrTable: correlation table.

Examples

� corrTableHndl = '@(eigVec, corrInputData, gepOptions, corrTable, '...

'statusWindow)myCorrTable(eigVec, corrInputData, gepOptions, '...

'corrTable, statusWindow)': Handle function which compute custom correlation
table.

6.8 GEP without AToM

GEP can be created with some limitations without need of AToM. Because without existing AToM
object GEP can not have reference to physics, workspace, mesh and other solvers, only values
'custom' or 'empty' are allowed for property innerSolver. All settings of mesh and other
properties is up tu user in custom functions described in Section 6.7. An example setting follows
in Listing 6.10. GEP can be also used when an impedance matrix is already computed and inner
solver is not needed. Such example is in Listing 6.11.

Listing 6.8: An example how to use GEP without AToM and with MoM2D as inner solver.

myGEP = models.solvers.GEP.GEP;
myGEP.setProperties(...

'innerSolver', 'custom',...
'innerSolverHndl', '@(objGEP) myMoM2D(objGEP)',...
'innerSolverSolve', '@(innerSolver, frequencyList, waitbar) ...

myMoM2DSolve(innerSolver, frequencyList, waitbar)',...
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'innerSolverGetA', '@(innerSolver) innerSolver.X',...
'innerSolverGetB', '@(innerSolver) innerSolver.R',...
'nModes', 30,...
'AFSnIterations', 3,...
'AFSgoal', 'crossing');

frequencyList = linspace(1, 3, 21) .* 1e8;
myGEP.solve(frequencyList);

Listing 6.9: Function myMoM2D for example in Listing 6.10

function mySolver = myMoM2D(objGEP)

% Run AToM for mesh:
atom = Atom.start(false);
delete('myEllipse.atom')
atom.createProject('myEllipse');
atom.selectedProject.geom.addEllipse('[0 0 0]', '[1 0 0]', '[0 1/2 0]', '0', ...

'2*pi', 'Ellipse1');
atom.selectedProject.mesh.setElementSizeFromFrequency(false);
atom.selectedProject.mesh.setGlobalMeshDensity('0.1');
atom.selectedProject.mesh.getMesh();
mesh = atom.selectedProject.mesh.getMeshData2D();
atom.quit;

% prepare fields
mySolver.mesh = mesh;
mySolver.R = [];
mySolver.X = [];
end

Listing 6.10: Function myMoM2DSolve for example in Listing 6.10

function mySolver = myMoM2DSolve(mySolver, frequencyList, waitbar)
%% inputs for MoM
gaps = [];
waves = [];
symmetries = [];
settings = struct(...

'quadOrder', 1, ...
'nBatchMax', 5e3, ...
'nWorkers', 0, ...
'resultPath', pwd, ...
'resultsInRAM', true, ...
'resultsInFile', false, ...
'verbosity', 2);

requests = {'mesh', 'basisFcns', 'zMat'};

% solve MoM
Res = models.solvers.MoM2D.solve(mySolver.mesh, frequencyList, gaps, waves, ...

symmetries, settings, requests, waitbar);

% set outputs
mySolver.X = imag(Res.zMat.data);
mySolver.R = real(Res.zMat.data);

Listing 6.11: An example how to use GEP without AToM and without inner solver when input
matrices are already computed.

%% frequency list - at this frequencies is computed zMatrix
frequencyList = linspace(0.5e9, 1.5e9, 21);

64



CHAPTER 6. GENERALIZED EIGENVALUE PROBLEM SOLVER

%% precomputing input matrices
% can be loaded from file, here are computed by MoM2D in AToM
% - create dipole - compute zMat - close AToM
atom = Atom.start(false);
atom.createProject('zMatComputation');
atom.selectedProject.geom.addRectangle('[0 0 0]', '1', '0.05', 'z', 'dipole');
atom.selectedProject.mesh.getMesh();
atom.selectedProject.physics.setFrequencyList(frequencyList);
atom.selectedProject.solver.MoM2D.solve;
zMat = atom.selectedProject.solver.MoM2D.results.zMat.data;
atom.quit; % quit AToM

%% create and set GEP object
myGEP = models.solvers.GEP.GEP();
myGEP.setProperties(...

'innerSolver', 'empty',... % set innerSolver to empty
'nModes', 20); %increase number of modes

%% set input matrices (3 ways)
% way 1:
myGEP.setMatrixA(imag(zMat));
myGEP.setMatrixB(real(zMat));
% way 2:
% myGEP.setMatrix('A',imag(zMat));
% myGEP.setMatrix('B',real(zMat));
% % way3:
myGEP.setMatrices(imag(zMat),real(zMat),[]);

%% solve
% solve with frequency list as input
myGEP.solve(frequencyList);
% OR
% myGEP.setFrequencyList(frequencyList);
% myGEP.solve;
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Chapter 7

Results

7.1 Overview

Results is part of the AToM which is intended to work with outcomes coming from AToM solvers.
This package contains several tools for their post-processing and following visualisation which is
an important part of the design process, it provides you informations about your project and also
physical insight into your design.

Results processing in AToM can be done in two completely different ways. First, low-level
approach, which puts demands on the user is based on set functions (see Section 7.2) which can
be used. Second, high-level approach, is about special standalone results browser application (see
Section 7.3) which can be operated by its graphical user interface.

Listing 7.1: Basic example of usage AToM and current visualisation by Results.

% init AToM, create project
atom = Atom.start(false);
atom.createProject('basicExample');

% Physics
frequencyList = 150e6;
atom.selectedProject.physics.setFrequencyList(frequencyList);

% Geometry
atom.selectedProject.geom.addParallelogram('[-0.5, -0.02, 0]', ...
'[0.5, -0.02, 0]', '[-0.5, 0.02, 0]', 'dipole');

% Feeding
atom.selectedProject.physics.feeding.add2DDiscretePort(1, ...
'baseObjName', 'dipole', ...
'positionPar', '[0, -0.02, 0; 0, 0.02, 0]', ...
'description', 'port1');
atom.selectedProject.physics.feeding.editFeeder(1, 'isEnabled', true, ...
'type', 'voltage', 'value', '1');

% Mesh
atom.selectedProject.mesh.setGlobalMeshDensity(20);
atom.selectedProject.mesh.getMesh();

% MoM2D solver setup
atom.selectedProject.solver.MoM2D.setProperties('resultRequests', ...
'basisFcns, mesh, iVec', ...
'verbosity', 2, 'nBatchMax', 2000, ...
'nWorkers', 0);
atom.selectedProject.solver.MoM2D.setProperties('quadOrder', 1);
atom.selectedProject.solver.MoM2D.solve();

% collect results
mesh = atom.selectedProject.solver.MoM2D.results.mesh;
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basisFcns = atom.selectedProject.solver.MoM2D.results.basisFcns;
iVec = atom.selectedProject.solver.MoM2D.results.iVec.data;

% quit AToM
atom.quit;

% plot current
results.plotCurrent(mesh, 'basisFcns', basisFcns, 'iVec', iVec);

7.2 Public functions

This section is a list of all low-level functions that can be used to process or display outcomes from
AToM solvers. Notice that only basic examples of use are listed here, for further details look into
the list of functions related to this document or check corresponding files in examples folder.

calculateCharacteristicAngle more

characteristicAngle=results.calculateCharacteristicAngle(eigennumber)

Computes characteristic angles from eigennumbers.

calculateCharge more

divJ=results.calculateCharge(mesh, basisFcns, iVec)

Computes charge distribution on the structure with respect to the inserted vector of expansion
coefficients.

calculateCurrent more

[Jx, Jy, Jz]=results.calculateCurrent(mesh, basisFcns, iVec)

Computes current distribution on the structure with respect to the inserted vector of expan-
sion coefficients.

calculateCurrentDecomposition more

decomposition=results.calculateCurrentDecomposition(mesh, basisFcns, iVec, ...

frequency)

Computes current decomposition using projection of spherical harmonics using S matrix (see
Sec. 8.1).

calculateEigennumber more

eigennumber=results.calculateEigennumber(characteristicAngle)

Computes eigennumbers from characteristic angles.

calculateFarField more
farFieldStructure=results.calculateFarField(mesh, frequency, 'basisFcns', ...

basisFcns, 'iVec', iVec)

Calculates the far-field radiation pattern and other related quantities.

calculateNearField more
nearFieldStructure=results.calculateNearField(mesh, basisFcns, iVec, ...

frequency, plane, distance, uPoints, vPoints)

Computes the near electric and magnetic field.

calculateQFBW more

QFBW=results.calculateQFBW(zIn, frequency, alpha)

Computes quality factor QFBW [?].

calculateQZ more

[QZ, QZtuned]=results.calculateQZ(zIn, frequency)

Computes quality factor QZ [?].

calculateRCS more

RCS=results.calculateRCS(mesh, basisFcns, iVec, frequency)

Computes radar cross section (RCS). Depending on the incident wave and position of obser-
vation point can be computed monostatic or bistatic radar cross section.
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calculateS more

s = results.calculateS(zIn)

Computes s-parameters from z-parameters.

plotBasisFcns more

handles=results.plotBasisFcns(mesh, basisFcns)

Creates plot of basis functions.

plotCharacteristicAngle more

handles=results.plotCharacteristicAngle('characteristicAngle', charAngle, ...

'frequency', frequency)

Creates plot of characteristic angles.

plotCharge more

handles=results.plotCharge(mesh, 'divJ', divJ)

Creates plot of charge distribution on the structure.

plotCurrent more

handles=results.plotCurrent(mesh, 'J', J)

Creates plot of current distribution on the structure.

plotCurrentDecomposition more

handles = results.plotCurrentDecomposition('frequency', frequencyList, ...

'decomposition', decomposition)

Creates plot of decomposition of given current into projection of spherical harmonics.

plotEigennumber more

handles=results.plotEigennumber('frequency', frequency, 'eigennumber', ...

eigennumber)

Creates plot of eigennumbers.

plotFarField more

handles=results.plotFarField('farField', farFieldMatrix, 'phi', phiVector, ...

'theta', thetaVector)

Creates plot of far-field radiation pattern.

plotFarFieldCut more

handles=results.plotFarFieldCut('theta', thetaVector, 'phi', phiVector, ...

'farField', farFieldMatrix, 'thetaCut', thetaCutValue)

Creates plot of far-field radiation pattern cut.

plotMesh more

handles=results.plotMesh(mesh)

Creates plot of inserted mesh structure and its remarkable attributes.

plotNearField more

handles=results.plotNearField('nearField', nearField, 'uPoints', uPoints, ...

'vPoints', vPoints, 'plane', 'x', 'distance', distance)

Creates plot of near-field.

plotQ more

handles=results.plotQ(Q, frequency)

Creates plot of given quality factor.

plotRCS more

handles=results.plotRCS('RCS', RCS, 'independentVariable', 'theta', 'phi', ...

phi, 'theta', theta, 'fixedDimensionPhi', fixedValue)

Creates plot of radar cross section.

plotS more

handles = results.plotS('frequency', frequency, 's', s)

Creates plot of s-parameters.

All plotting functions return structure containing references to all graphical objects used in specified
plot. These references can be used to modify plot appearance.
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Listing 7.2: Example of usage all public functions.

% init AToM, create project
atom = Atom.start(false);
atom.createProject('basicExample');

% Physics
nFrequencies = 10;
frequencyList = linspace(100e6, 300e6, nFrequencies);
atom.selectedProject.physics.setFrequencyList(frequencyList);

% Geometry
atom.selectedProject.geom.addParallelogram('[-0.5, -0.02, 0]', ...
'[0.5, -0.02, 0]', '[-0.5, 0.02, 0]', 'dipole');

% Feeding
atom.selectedProject.physics.feeding.add2DDiscretePort(1, ...
'baseObjName', 'dipole', ...
'positionPar', '[0, -0.02, 0; 0, 0.02, 0]', ...
'description', 'port1');
atom.selectedProject.physics.feeding.editFeeder(1, 'isEnabled', true, ...
'type', 'voltage', 'value', '1');

% Mesh
atom.selectedProject.mesh.setGlobalMeshDensity(20);
atom.selectedProject.mesh.getMesh();

% MoM2D solver setup
atom.selectedProject.solver.MoM2D.setProperties('resultRequests', ...
'basisFcns, mesh, iVec, zInActive, zMat', ...
'verbosity', 2, 'nBatchMax', 2000, ...
'nWorkers', 0);
atom.selectedProject.solver.MoM2D.setProperties('quadOrder', 1);
atom.selectedProject.solver.MoM2D.solve();

% GEP solver
atom.selectedProject.solver.GEP.solve();

% collect results
% MoM2D
mesh = atom.selectedProject.solver.MoM2D.results.mesh;
basisFcns = atom.selectedProject.solver.MoM2D.results.basisFcns;
iVec = atom.selectedProject.solver.MoM2D.results.iVec.data;
zInActive = atom.selectedProject.solver.MoM2D.results.zInActive.data;

%GEP
eigNum = atom.selectedProject.solver.GEP.results.eigNum.sorted.data;

% characteristicAngle
characteristicAngle = results.calculateCharacteristicAngle(eigNum);
handles1 = results.plotCharacteristicAngle('frequency', frequencyList, ...
'characteristicAngle', characteristicAngle);

% charge
divJ = results.calculateCharge(mesh, basisFcns, iVec(:, 2));
handles2 = results.plotCharge(mesh, 'divJ', divJ);

% current
[J(:,1), J(:,2), J(:,3)] = results.calculateCurrent(mesh, basisFcns, ...
iVec(:, 2));
handles3 = results.plotCurrent(mesh, 'J', J);

% currentDecomposition
decomposition = results.calculateCurrentDecomposition(mesh, basisFcns, ...
iVec, frequencyList);
handles4 = results.plotCurrentDecomposition('frequency', frequencyList, ...
'decomposition', decomposition);
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% eigennumber
eigennumber = results.calculateEigennumber(characteristicAngle);
handles5 = results.plotEigennumber('frequency', frequencyList, ...
'eigennumber', eigennumber);

% far-field
farFieldStructure = results.calculateFarField(mesh, frequencyList(2), ...
'basisFcns', basisFcns, 'iVec', iVec(:, 2));
handles6 = results.plotFarField('farField', farFieldStructure.D, ...
'theta', farFieldStructure.theta, 'phi', farFieldStructure.phi);

% far-field cut
handles7 = results.plotFarFieldCut('theta', farFieldStructure.theta, ...
'phi', farFieldStructure.phi, 'farField', farFieldStructure.D, ...
'thetaCut', pi/2);

% near-field
plane = 'y';
distance = 0;
uPoints = linspace(-1, 1, 100);
vPoints = uPoints;
nearFieldStructure = results.calculateNearField(mesh, basisFcns, ...
iVec(:, 2), frequencyList(2), plane, distance, uPoints, vPoints);
handles8 = results.plotNearField('nearField', nearFieldStructure.E, ...
'uPoints', uPoints, 'vPoints', vPoints, 'plane', 'x', ...
'distance', distance);

% QFBW
QFBW = results.calculateQFBW(zInActive, frequencyList, 0.1);
handles9 = results.plotQ(QFBW, frequencyList);

% QZ
QZ = results.calculateQZ(zInActive, frequencyList);
handles10 = results.plotQ(real(QZ), frequencyList);

% disable feeder, set plane wave
atom.selectedProject.physics.feeding.editFeeder(1, 'isEnabled', false);
atom.selectedProject.physics.feeding.addPlaneWave('Plane Wave', ...
'propagationVector', '[0 0 1]', 'initElectricField', '[1 0 0]', ...
'axialRatio', 'Inf', 'direction', 'right', 'isEnabled', true);

% MoM2D solver setup
atom.selectedProject.solver.MoM2D.setProperties('resultRequests', ...
'basisFcns, mesh, iVec', ...
'verbosity', 2, 'nBatchMax', 2000, ...
'nWorkers', 0);
atom.selectedProject.solver.MoM2D.setProperties('quadOrder', 1);
atom.selectedProject.solver.MoM2D.solve();

% collect results
% MoM2D
iVecPW = atom.selectedProject.solver.MoM2D.results.iVec.data;

% RCS
[RCS, theta, phi] = results.calculateRCS(mesh, basisFcns, iVec(:, 2), ...
frequencyList(2));
handles11 = results.plotRCS('RCS', RCS, 'independentVariable', 'theta', ...
'fixedDimensionPhi', pi/2, 'theta', theta, 'phi', phi);

% s-parameters
s = results.calculateS(reshape(zInActive, [1 1 length(zInActive)]));
handles12 = results.plotS('frequency', frequencyList, 's', s);

% mesh
handles13 = results.plotMesh(mesh);
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% basisFcns
handles14 = results.plotMesh(mesh);
handles14 = results.plotBasisFcns(mesh, basisFcns, 'handles', handles14);

% quit AToM
atom.quit;

7.3 Results class

Results class is a standalone application which is in AToM responsible for post-processing and
visualisation of results. This application can be used from a graphical user interface (GUI) which
is recommended or from classical scripts or command line. Usage of this application has at least
two primary advantages. First, Results has its own storage called Repository, which manages
all loaded as well as computed data (for more details see Section 7.3.1). Second, it is possible to
control everything from GUI (see Section 7.3.2).

Listing 7.3 shows the basic commands how to start Results. Second option how to start Results
is clicking the corresponding button in upper right corner of AToM MainViewer (see Fig. 9.1), which
starts Results and also connects them with AToM.

Listing 7.3: Example of basic usage of Results class, which consists of starting, interconnectioning
with AToM and closing.

% start Results class; true - opens GUI, false - without opening GUI
atomresults = results.Results.start(true);

% interconnection with AToM
atomresults.connectAtom(atomReference);

% close Results class
atomresults.exit;

7.3.1 Structure of repository and data types

Structure of Results is hierarchically divided into four separated layers with straight rules. Layers
and its hierarchy is shown in Fig. 7.1.

Layers and their purpose are as follows:

� Results - container which packs everything together.

� Repository - internal memory controller which manages all data.

� Slot - container for logically related data, i.e. results of one MoM calculation. Slot stores all
common informations about structure in form of mesh and basis functions.

� ListPoint - container for data with the same value of frequency. Data are stored here.

Results

repository

object of class Repository

Reference to internal data storage.

template

struct

Structure containing all graphical pre-sets.
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options

struct

Structure containing some values influencing the computations.

version

char

Version of Results.

Repository

slot

object of class Slot

List of references to all stored slots.

Slot

name

char

Unique name of the Slot.

listValues

double

Contains list or frequencies.

domain

char

Specifies computational domain.

mesh1D

struct

Contains mesh for results from MoM1D.

mesh2D

struct

Contains mesh for results from MoM2D.

meshBEM

struct

Contains mesh for results from BEM.

basisFcns

struct

Contains basis functions for results from MoM2D.

listPoint

object of class ListPoint

Contains all ListPoint which are located in this Slot.

ListPoint

name

char

Unique name of the ListPoint.

listValue

double

Frequency value specific for this ListPoint.
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Results
Repository

Slot Slot
ListPoint

DATA

ListPoint
DATA

ListPoint
DATA

ListPoint
DATA

ListPoint
DATA

Figure 7.1: Structure of the inner layers in Results

data

cell

Contains loaded as well as computed data. List of all data types which can by stored is shown
below.

col

cell

Contains unique data names which are used for data identification.

Slots and ListPoints are unambiguously specified by name, specifically, it is required that all
Slots and all ListPoints in one Slot have unique names.

Components of the structure can be created directly from command line. Listing 7.4 shows
commands made for Results’structure management.

Listing 7.4: Example of commands for Results’structure management.

% creation of structure components
atomresults.createSlot('SlotName');
atomresults.createListPoint('ListPointName', 'SlotName', 'value of the ListPoint ...

(frequency value)');

% creation of a whole list of ListPoints
atomresults.createListPoint('ListPointName', 'SlotName', 'vector of values ...

(frequency list)');

% removal of structure components
atomresults.removeSlot('SlotName');
atomresults.removeListPoint('ListPointName', 'SlotName');

Repository is open to read which allows to extract all calculated data for users’ own operations
(see Listing 7.5).

Listing 7.5: Example of extraction current densities data from Results.

% extraction of data for current density from Results
J = atomresults.repository.slot(1).listPoint(1).data.J

Following list contains all data types which can by stored in Results

� iVec - vector of expansion coefficients,
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� points - position of computed current density,

� J - matrix of current densities computed in triangles’ centres,

� J nodes - current density computed in nodes of mesh,

� divJ - surface charge density,

� divJ nodes - surface charge density in nodes,

� theta - theta angle for far-field calculation,

� phi - phi angle for faf-field calculation,

� FTheta - theta component of radiation vector in (ϑ, ϕ),

� FPhi - phi component of radiation vector in (ϑ, ϕ),

� FHor - horizontal component of radiation vector in (ϑ, ϕ),

� FVer - vertical component of radiation vector in (ϑ, ϕ),

� U - total radiation intensity,

� UTheta - theta component of radiation intensity,

� UPhi - phi component of radiation intensity,

� UHor - horizontal component of radiation intensity,

� UVer - vertical component of radiation intensity,

� D - total directivity,

� DTheta - theta component of directivity,

� DPhi - phi component of directivity,

� DHor - horizontal component of directivity,

� DVer - vertical component of directivity,

� Prad - radiated power,

� plane - plane, in which is near-field computed,

� uPoints - vector of the first axis coordinates for near-field computation,

� vPoints - vector of the second axis coordinates for near-field computation,

� distance - distance of near-field computational plane from the origin,

� E - electric near-field computed in points defined by plane, distance, uPoints and vPoints,

� H - magnetic near-field computed in points defined by plane, distance, uPoints and vPoints,

� eigNum - eigennumbers,

� charAngle - characteristic angles,

� zInActive - active input impedance,

� S11 - reflection coefficient,

� QZ - quality factor QZ,

� QFBW - quality factor QFBW,

� RCS - radar cross section,

� RCStheta - theta angle for RCS computation,

� RCSphi - phi angle for RCS computatio,

� decomposition - decomposition of given current into spherical harmonics using S matrix,
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1

2

3

4

Figure 7.2: Graphical user interface of Resultg - Load tab

� indexMatrix - matrix used to identify spherical harmonics participating in current composi-
tion,

� V - voltage distribution over edge (only for BEM see Section 5.1),

� BEMRadPattern - radiation patter computed from data given by BEM,

7.3.2 GUI

Fig. 7.2 shows the basic layout of Results’ GUI. Menu Results contains entries Save, Load and
Quit, which allows to save and load data or quit Results respectively. Structure menu allows to
manage internal repository and for this reason contains entries Create Slot, Create ListPoint,
Remove Slot and Remove ListPoint. Last menu Options contains items Load options and Load

template which allows to load user pre-sets of graphical behaviour or important user values.
Box 2 of Fig. 7.2 contains six special tabs which are used for following actions:

� Load data - data loading,

� Compute - data pre-calculating,

� Plot Polar - plotting results into polar plot,

� Plot 2D - plotting data into two dimensional Cartesian coordinates,

� Plot 3D - plotting data into three dimensional Cartesian coordinates,

� Explore - going through the results.

Listing 7.6: Commands which can be used to open and close GUI.

% open GUI
atomresults.open;

% close GUI
atomresults.close;

Load data tab

Load tab, see Fig. 7.2, gives two possibilities how to load data into Results, directly (automatically)
from AToM (see Box 3) or manually from Matlab workspace (see Box 4). Commands for data
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loading directly are shown in Listing 7.7.

Automatic loading proceeds in the following way:

1. creation of Slot which is named ’\AToMProjectName\ \SolverAbbreviation\’ (Solver abbre-
viations are: MoM1D, MoM2D, GEP or BEM),

2. creation of all ListPoints inside before-created Slot, these ListPoints are named ’f \frequency
number\’

3. creation of data fields inside each ListPoint, there can be one or more data fields depending
on solver (one for MoMs and BEM, more for GEP - depending on number of modes),

4. inserting data into ListPoints.

Listing 7.7: Example of loading data to Results from command line.

% Loading data with pre-connected atom
atomresults.loadMoM();
atomresults.loadGEP();
atomresults.loadBEM();

% Loading data without pre-connected atom
atomresults.loadMoM(atomReference);
atomresults.loadGEP(atomReference);
atomresults.loadBEM(atomReference);

On the contrary, manual loading procedure is completely user-based, it means the user is re-
sponsible for all steps of loading.

� creation repository structure (Slot and ListPoints) and insert all informations about object
under explore, mesh eventually basis functions,

� load data via panel “Load from workspace”(see Fig. 7.2 Box 4) or directly from MATLAB
command line.

Listing 7.4 shows all commands intended for repository structure management and Listing 7.8
shows all functions which can be used for importing data into Results.

Listing 7.8: List of commands intended for data loading.

% insert mesh and basis functions
atomresults.insertMesh('SlotName', meshStructure);
atomresults.insertBasisFcns('SlotName', BasisFunctionsStructure);

% insert data
AToM.insertData('dataName', 'dataType', data, 'ListPointName', 'SlotName');

Compute tab

This second tab (see Fig. 7.3) is intended for pre-calculation of results but for next visualisation is
not necessary to use it. However, there are at least three cases in which is this tab important:

� User wants only compute data without visualisation.

� User wants to speed up next visualisation (without pre-calculation must be data calculated
just before visualisation).

� User wants to change some of the parameters which affects the calculation (see. Fig. 7.3
Box 2).

77



7.3. RESULTS CLASS

1

2

Figure 7.3: Results GUI - Compute tab

Figure 7.4: Results GUI - Plot polar tab

Compute tab consists of two main parts, first part (see Fig. 7.3 Box 1) is used to select the data for
which should be new quantity computed. Second part of the window (see Box 2) contains special
panel which is based on requested quantity. Computational parameters can be changed using this
panel.

Plot tabs

Third, fourth and fifth tab, specifically Plot Polar, Plot 2D and Plot 3D, are responsible for data
visualisation. Structure of these tabs is similar with Compute tab. it is divided into two parts,
upper part is used to specify data which will be plotted and lower part contains special panel which
can modify resultant figure.

Plot polar tab (see Fig. 7.4) allows user generate figures with polar axes. These quantities can
be plotted in polar plot:

� Far-field cut

Plot 2D tab (see Fig. 7.5) is used to generate figures with two dimensional Cartesian coordinates.
These quantities can be plotted into 2D Cartesian axes:
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Figure 7.5: Results GUI - Plot 2D tab

� Characteristic angle

� Eigennumber

� Input impedance

� Reflection coefficient

� Qz

� QFBW

� Radar cross section (RCS)

� Current decomposition

Plot 3D tab (see Fig. 7.6) is destined to generate figures with three dimensional Cartesian
coordinates. These quantities can be plotted into 3D Cartesian axes:

� Current

� Charge

� Far-Field

� Near-Field

� Mesh

All these three tabs also allows to control where the new plot will be placed. There are following
choices

� New figure – plot will be in new figure,

� Add – new plot will be added into current figure,

� Replace – new plot will replace present plot in current figure.

Using this feature it is possible to put more ’layers’ into one figure and create for example figure
as it is depicted in Fig. 7.7.

Explore tab

Explore tab (see Fig. 7.8) is special tool which serves to browse computed results and make it easier
to analyse them. To use this tool the figure with analysed quantity must be created. After that the
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Figure 7.6: Results GUI - Plot 3D tab

Figure 7.7: Example of combination more layers in one figure

Explore tab is activated and allows to browse the Slots, ListPoints and also different data defined
by DataName and see corresponding results.

For comfortable use it is recommended to pre-calculate (see part Compute tab in this Section)
all data which user plans to analyse. Otherwise the usage of the Explore tab can be limited by the
time necessary to prepare new data.

7.4 Templates and other user preferences

7.4.1 Templates

The appearance of the displayed graphs can be affected by a personal set of graphical styles, which
are stored in the template. This file contains all graphical presets which are used inside the plotting
functions (colors, line styles, fonts, etc.). Templates must be stored in results.templates. In the
following box is shown a short preview of the part of the default template.

Listing 7.9: Example of template definition.
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Figure 7.8: Results GUI - Explore tab

% triangles
template.triangles.faceColor = paired12(list.brownLight,:);
template.triangles.faceAlpha = 1;
template.triangles.lineColor = atom.b1;
template.triangles.lineStyle = '-';
template.triangles.lineWidth = 0.5;
template.triangles.lineAlpha = 1;

An important feature of templates is the necessity to define in the file only differences from the
original (default) template.

7.4.2 Standardize figure and user profile

This feature is intended to normalise figure (size, position of legend, grid, etc.), especially to
be used before saving or exporting pictures. The list of preferences which are used is saved in
results.figureProfiles.

standardizeFigure

standardizeFigure more

results.standardizeFigure(handles)

Function standardizeFigure is used as standardization function for generated figure. User
pre-defined profile can be used to normalize all figures to the same graphical appearance.

81



7.4. TEMPLATES AND OTHER USER PREFERENCES

82



Chapter 8

Utilities

8.1 Matrix S

S matrix [?] is special way how to compute resistance matrix R

R = STS, (8.1)

with the particular elements of the S matrix are

Sαp = k
√
Z0

∫
Ω

ψp (r) · u(1)
α (kr) dS. (8.2)

For more details see [?].
Listing 8.1 shows basic example how to create S matrix. This matrix can be also used in GEP

(see 6.6.4).

Listing 8.1: Example of the S matrix creation.

% create S matrix
S = models.matrixOperators.SMatrix.computeS(mesh, basisFcns, frequency)

8.2 Subregion matrix C

Subregion matrix C with properties
ZS = CTZC, (8.3)

IS = CTI (8.4)

I = CIS (8.5)

where Z is impedance matrix of full system, ZS is impedance matrix of reduced system, I are
the current density coefficients related to Z and IS are the current density coefficients related to
ZS, provides possibility to reduce the system and create virtual holes into structure without its
modification.

The idea of this matrix is based on elimination of specific rows and columns of the impedance
matrix which leads to fictive removal of part of the structure. Fig. 8.1 illustrates influence of
subregion matrix to the computation and Listing 8.2 shows how can be this matrix created.

Listing 8.2: Example of the C matrix creation.

% define polygons bounding removed parts
polygon1 = [x1 y1; x2 y2; x3 y3; x1 y1];
polygon1 = [x4 y4; x5 y5; x6 y6; x4 y4];
polygons = {polygon1, polygon2};

83



8.3. SYMMETRY MATRICES

Figure 8.1: Example how the C matrix affects the structure.

% create subregion matrix C
[C, basisFcnsOrder, newBasisFcns] = ...

models.utilities.subregionMatrices.computeCMat(mesh, basisFcns, polygons)

8.3 Symmetry matrices

If the structure has a symmetry, the symmetry reflection can be used to reduce size of symmetric
quantities. There exist rectangular matrix Cr which reduce, for example,

Ẑ = CT
r ZCr, (8.6)

Î = CT
r I, (8.7)

I = CrÎ, (8.8)

where Z is full impedance matrix and Ẑ is reduced impedance matrix.

8.3.1 Nomenclature

� Cr – Rectangular matrix Cr for given transform matrix T.

� C – Square matrix denoting on which basis function is reflected to other basis function after
applying transform matrix T. Each row can contain only one non-zero element ±1.

� eBF – Vector of logical value where is marked if each basis function have to be computed or
it can be reached by applying symmetry matrix Cr. (Note, that for pair of mirroring basis
functions is one of them marked as “elementary”, i.e. true and the second one is marked
as “mirrored”, i.e. false). One can see Z == Cr.ˆT * Z(eBF, eBF)* Cr in case Z has
symmetry the Cr was computed for.

� T – 3D transform matrix of size [3 x 3].

� parityMatrix – A diagonal matrix which distinguish PEC and PMC type of mirroring.

� symmetry – Symmetry selection:

– 'E' – Identity

– 'I' – Inverse

– 'C:aaa:b' – Rotation by 2pi/b around plane with normal vector defined by aaa:
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* aaa = 'XY' or aaa = 'Z' for basic symmetry plane with normal vector [0 0 1].

* aaa = 'XZ' or aaa = 'Y' for basic symmetry plane with normal vector [0 1 0].

* aaa = 'YZ' or aaa = 'X' for basic symmetry plane with normal vector [1 0 0].

* aaa = 'A,B,C', where vector n = [A B C] is a normal vector.

– 'Sig:aaa:ccc' – reflection, where:

* aaa is the same as above.

* ccc = 'PEC' or ccc = 'PMC' for select type of symmetry plane.

– 'S:aaa:b' – rotary-reflection by 2pi/b around plane with normal vector defined by aaa.
It is defined as T = T1 * T2, where T1 is computed by rotation matrix 'C:aaa:b' and
T2 is computed by reflection matrix Sig:aaa:PMC.

– Examples:

* symmetry = 'C:Z:2' – Rotation about π around z-axis.

* symmetry = 'Sig:XY:PEC' – PEC reflection in z-axis.

* symmetry = 'Sig:1,-1,1:PMC' – PMC reflection in given plane.

8.3.2 Public functions

All followed functions are located in namespace +models/+utilities/+symmetryMatrices. Com-
plete syntax is outputs = models.utilities.symmetryMatrices(inputs).

aggregateTwoC

[Cr tot, eBF tot] = aggregateTwoC(Cr1, eBF1, Cr2, eBF2)

Aggregate two Cr matrices. Matrix C fulfill transform operation T = T1T2.

applyPEC

C = applyPEC(C, parityMatrix)

Apply PEC reflection to matrix C.

applyPMC

C = applyPMC(C, parityMatrix)

Apply PMC reflection to matrix C.

CMatrixSymmetryPlanes

[Cr tot, eBF tot] = CMatrixSymmetryPlanes(mesh, symmetriesMoM, basisFcns)

Used in MoM Solver, where symmetriesMoM is a vector [3 x 1] corresponding to [XY, ...

XZ, XY] symmetry planes with values 1 for none symmetry, 2 for PEC and 3 for PMC.

computeCMat

[isSymmetric, C, parityMatrix] = computeCMat(mesh, symmetry, basisFcns)

Compute C matrix for given symmetry.

computeCMatTotal

[Cr total, eBF tot] = computeCMatTotal(mesh, symmetries, basisFcns)

Compute total coupling matrices for list of symmetries given as symmetries = 'symmetry1; ...

symmetry2; symmetry3'.

identityMatrix

E = identityMatrix()

Create transform matrix for identity.

inverseMatrix

I = inverseMatrix()

Create transform matrix for inversion.
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Figure 8.2: Simple symmetric structure.

normalizeCr

Cr = normalizeCr()

Normalize Cr

reduceC

[Cr, eBF] = reduceC(C)

Reduce square matrix C to rectangular matrix Cr and provide vector eBF.

reflectionMatrix

P = reflectionMatrix(n)

Create transform matrix for reflection. Input n is normal to mirror plane.

rotationMatrix

R = rotationMatrix(u, theta)

Create transform matrix for rotation around unit vector u by angle theta.

symmetryCheck

[isSymmetric, C, parityMatrix] = symmetryCheck(mesh, basisFcns, T)

Check if given mesh has symmetry described by transform matrix T. Output is logical value
isSymmetric and in positive case corresponding matrices C and parityMatrix.

8.3.3 Example

Let us demonstrate a principle of symmetry matrices on simply structure shown in Fig. 8.2. This
structure can be generated by code in Listing 8.3, this structure has three types of symmetry:
rotation about π (C2) and two reflections (σxz and σyz).

Code in Listing 8.4 shows two ways, how to get matrices Cr for each symmetry type separately,
Listing 8.5 shows how to combine two symmetry or all symmetry types.

Listing 8.3: Generate simple symmetric structure.

% start atom, create project
atom = Atom.start(false);
atom.createProject('symmetryMatrices');
% create polygon, generate mesh
atom.selectedProject.geom.addPolygon(['[1 0 0; 1.5 1.5 0; 0 1 0; -1.5 1.5 0;'...

'-1 0 0; -1.5 -1.5 0; 0 -1 0; 1.5 -1.5 0]'], 'Polygon1');
atom.selectedProject.mesh.setElementSizeFromFrequency(false);
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atom.selectedProject.mesh.setGlobalMeshDensity('2');
atom.selectedProject.mesh.getMesh();
% get mesh and basis functions
mesh = atom.selectedProject.mesh.getMeshData2D;
basisFcns = models.solvers.MoM2D.basisFcns.getBasisFcns(mesh);

Listing 8.4: Generate symmetry matrices for each symmetry type.

%% Reflection YZ
% prepare and compute C matrix
T = models.utilities.symmetryMatrices.reflectionMatrix([1 0 0]);
[isSymmetric1, C1, parityMatrix1] = ...

models.utilities.symmetryMatrices.symmetryCheck(mesh, basisFcns, T);
C1 = models.utilities.symmetryMatrices.applyPMC(C1, parityMatrix1);
% OR do it in one command
[isSymmetric1a, C1a, eBF1a] = ...

models.utilities.symmetryMatrices.computeCMat(mesh,'Sig:X:PMC');

% reduce Cr and normalize Cr matrix
[Cr1, eBF1] = models.utilities.symmetryMatrices.reduceC(C1);
Cr1 = models.utilities.symmetryMatrices.normalizeCr(Cr1);

% OR do all commands above in one line
[Cr1a, eBF1a] = models.utilities.symmetryMatrices.computeCMatTotal(mesh, ...

'Sig:X:PMC', basisFcns);

%% Reflection XY
[Cr2, eBF2] = models.utilities.symmetryMatrices.computeCMatTotal(mesh, ...

'Sig:Y:PMC', basisFcns);

%% Rotation C2 arout Z axis
[Cr3, eBF3] = models.utilities.symmetryMatrices.computeCMatTotal(mesh, 'C:Z:2', ...

basisFcns);

Listing 8.5: Generate symmetry matrices fulfilling all symmetries of structure.

[Cr12, eBF12] = models.utilities.symmetryMatrices.aggregateTwoC(Cr1, eBF1, Cr2, eBF2);
[CrALL, eBFALL] = models.utilities.symmetryMatrices.aggregateTwoC(Cr12, eBF12, ...

Cr3, eBF3)

%% OR do everything in one command
[CrALLa, eBFALLa] = models.utilities.symmetryMatrices.computeCMatTotal(mesh, ...

'Sig:X:PMC; Sig:Y:PMC; C:Z:2', basisFcns)
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Chapter 9

Graphical User Interface (GUI)

First of all it is necessary to note, that AToM is originally meant to be controlled via command
line and GUI is just superstructure, which provide graphical interface to some (not all) functions
of AToM. GUI consists of several individual viewers, which control one or more AToM mod-
els. When starting AToM with command atom = Atom.start or atom = Atom.start(true),
AToM will be started with opened GUI. To start AToM without GUI is performed by atom ...

= Atom.start(false).

9.1 Viewers with separated figure

These viewers shows the most important parts of AToM projects and it is suitable to have them
in separated figures to be possible show them in all cases. Viewers with separated figure are

� Main Viewer - main figure of AToM GUI which contains several tabbed panels integrating
another viewers. See Fig. 9.1. This viewer is shown right after creating AToM with GUI.

� Workspace Viewer - GUI for Workspace model. See Fig. 1.1. This viewer is possible to open
from Main Viewer by clicking on “Workspace” button.

� History Viewer - GUI for History model. This viewer is possible to open from Main Viewer
by clicking on “History” button.

� Design Viewer - GUI for Geom, Mesh, Physics and Feeding models. Section 9.5. This viewer
is possible to open from Main Viewer by clicking on “Desing” button.

These viewers is possible to simply close and open also from Command Window by call-
ing method open and close. For example when AToM is started without GUI (atom = ...

Atom.start(false);) it is possible to open, e.g., Main Viewer by calling atom.gui.mainViewer.open.
On the other hand, when all viewers are opened it is possible to close, e.g., Workspace Viewer by
calling atom.gui.workspaceViewer.close.

9.1.1 Public Methods

close
gui.designViewer.close; gui.historyViewer.close; gui.mainViewer.close; ...

gui.workspaceViewer.close;

Close figure of relevant viewer.

open
gui.designViewer.open; gui.historyViewer.open; gui.mainViewer.open; ...

gui.workspaceViewer.open;

Open figure of relevant viewer.

setPosition
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Figure 9.1: Main Viewer. Model List Viewer is the tree representing simulation model, Project
Viewer is on the bottom part of figure.

gui.designViewer.setPosition(viewerPos); gui.historyViewer.setPosition(viewerPos); ...

gui.mainViewer.setPosition(viewerPos); gui.workspaceViewer.setPosition(viewerPos);

Allows to set precise position of relevant viewer on screen. Input argument viewerPos has
meaning [left bottom width height], which is usual in MATLAB graphics.

9.2 Viewers integrated in Main Viewer

Viewers directly integrated in Main Viewer are

� Project Viewer - on the bottom of Main Viewer. Allows selection, creation, opening and
closing of projects. This viewer is accessible whatever tab in Main Viewer is selected.

� Model List Viewer - on tab “Model”. Contain tree representing simulation model including
created geometry entities, feeding and imported meshes.

� Physics Viewer - on tab “Physics”. Allows controlling of Physics model.

� Mesh Viewer - on tab “Mesh”. Allows controlling of Mesh model.

� Solvers Viewer - on tab “Solvers”. Include tabs “MoM1D”, “MoM2D”, “GEP” and “BEM”
where is possible to define properties of individual solvers and perform simulation.

These viewers has no accessible references because its appearance is fully managed by Main
Viewer itself.

9.3 Color Templates

AToM GUI allows to use color templates and hence adjust appearance of whole GUI. AToM is
distributed with two templates: defaultTemplate.m and darkTemplate.m. These templates are
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placed in +interface\+templates\ folder and user defined template can be simply defined using
these default templates. Switching between templates is possible via Main Viewer (Fig. 9.1) in menu
“Templates”. To reset list of templates in menu “Templates” it is necessary to close Main Viewer
and open it again. By default, during the start of GUI interface.templates.defaultTemplate
is always loaded. If change of default template is needed, original file defaultTemplate.m has to
be rewritten (modified).

9.4 Class GUI

All viewers are managed by class GUI and it is possible to access its public methods for general
viewers treatment. In singleton atom instance GUI exists just once and is common to all projects.
Individual projects does not contain any information about way of displaying its content in GUI.
Instance of GUI class is accessible via Command Window by atom.gui.

9.4.1 Public Methods

applyTemplate

gui.applyTemplate('templateName')

Apply color template located in +interface\+templates\ to all AToM viewers. Template
file has to be function templateName.m returning struct variable in correct form with correct
data (Section 9.3).

close

gui.close

Close all opened viewers. Even without GUI AToM is still running and it is possible to control
it via Command Line. If reference to AToM object does not exists (AToM was created
by Atom.start;) it can be created by atom = Atom.start;. Returned atom variable is
reference to already running AToM session.

open

gui.open

Opens all AToM viewers. When no project active, just Main Viewer is opened.

9.4.2 Public Properties

designViewer

Reference to Design Viewer.

historyViewer

Reference to History Viewer.

mainViewer

Reference to Main Viewer.

workspaceViewer

Reference to Workspace Viewer.

9.4.3 Preferences

These preferences can be set using method atom.gui.setProperties('prop1Name', prop1Value, ...

'prop2Name', prop2Value, ..). Default values are shown in brackets {}.
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Figure 9.2: Example of error dialogue which is shown every time when invalid step is
made when working from GUI. Throwing error to Command Window depends on property
throwErrorToCommandWindow of GUI.

Figure 9.3: Design Viewer (DW) with mesh structure and one discrete port.

throwErrorToCommandWindow

Logical: {true} | false

Determine if thrown error because of invalid step when working with GUI will be shown also
in Command Window. Small window with error stack is always shown (Fig. 9.3).

9.5 Design Viewer

Design Viewer is the most complex viewer in AToM and allows interactively create simulation
task. Design Viewer is shown in Fig. 9.5. In the lower part of DW is status bar, where are shown
some basic instructions for selected interactive tool, or statistics of mesh. In the upper part are
buttons with miscellaneous functions. Every button has tool tip string with function description
and its functionality should be clear for people from Computational Electromagnetics discipline.
These buttons are logically separated into three rows. The upper row is mention to be for DW
display settings like zoom, projection, view direction, coordinate systems, working plane, showing
of symmetry planes, plane waves, discrete ports, adding plane waves and computing mesh from
geometry. The middle row is mentioned to be for geometry appearance, creating, editing and
creating ports. The lower row is mentioned to be for mesh appearance, editing, loading and saving.

9.5.1 Public Methods

close

gui.designViewer.close

Close figure with DesignViewer.

copy

gui.designViewer.copy

Copy axes of Design Viewer with all child objects into separate figure for advanced user
defined processing.
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fitWiew

gui.designViewer.fitWiew

Fit whole shown scene to fit into Design Viewer axes. There exist also keyboard short cut
Space for this method.

hideCoordinates

gui.designViewer.hideCoordinates

Hide coordinate cross in the lower-right corner of Design Viewer.

hideDiscretePorts

gui.designViewer.hideDiscretePorts

Hide all discrete ports in shown scene. Even newly defined ports will be hidden.

hideLabelsOfGeometryObjects

gui.designViewer.hideLabelsOfGeometryObjects

Hide labels of all geometry objects.

hideMeshQuality

gui.designViewer.hideMeshQuality

Hide colormap over mesh representing quality of mesh.

hideNumbersOfMeshEdges

gui.designViewer.hideNumbersOfMeshEdges

Hide numbers of edges of mesh.

hideNumbersOfMeshNodes

gui.designViewer.hideNumbersOfMeshNodes

Hide numbers of nodes of mesh.

hideNumbersOfMeshTriangles

gui.designViewer.hideNumbersOfMeshTriangles

Hide numbers of triangles of 2D mesh.

hideOrigin

gui.designViewer.hideOrigin

Hide origin of coordinate system.

hidePlaneWaves

gui.designViewer.hidePlaneWaves

Hide all plane plane waves. Even newly defined waves will be hidden.

hideSymmetryPlanes

gui.designViewer.hideSymmetryPlanes

Hide active symmetry planes. Even newly defined planes will be hidden.

hideWorkingPlane

gui.designViewer.hideWorkingPlane

Hide working plane.

open

gui.designViewer.open

Open figure with Design Viewer.

setPosition

gui.designViewer.setPosition(newFigurePosition)

Allows to set precise position of Design Viewer on screen. Input argument newFigurePosition
has meaning [left bottom width height], which is usual in MATLAB graphics.

setProjection

gui.designViewer.setProjection(newProjection)

Set projection to axes of Design Viewer. newProjection can be 'orthographic' or 'perspective'.
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setView

gui.designViewer.setView(cameraTarget, cameraPosition, cameraViewAngle)

This method set properties of camera in Design Viewer. cameraTarget is target (center of
view) of camera as numeric vector [1×3] with [x, y, z] coordinates, cameraPosition is global
position of camera also as numeric vector [1 × 3] and cameraViewAngle is angle of view of
camera in degrees.

setViewDirection

gui.designViewer.setViewDirection(newDirection)

Change direction of view. newDirection can be 'perspective', 'front', 'back', 'top',
'bottom', 'left' and 'right'.

showCoordinates

gui.designViewer.showCoordinates

Show coordinate cross in the lower-right corner of Design Viewer.

showDiscretePorts

gui.designViewer.showDiscretePorts

Show all discrete ports in shown scene.

showLabelsOfGeometryObjects

gui.designViewer.showLabelsOfGeometryObjects

Show labels of all geometry objects.

showMeshQuality

gui.designViewer.showMeshQuality

Show colormap over mesh representing quality of mesh.

showNumbersOfMeshEdges

gui.designViewer.showNumbersOfMeshEdges

Show numbers of edges of mesh.

showNumbersOfMeshNodes

gui.designViewer.showNumbersOfMeshNodes

Show numbers of nodes of mesh.

hideNumbersOfMeshTriangles

gui.designViewer.hideNumbersOfMeshTriangles

Hide numbers of triangles of 2D mesh.

showOrigin

gui.designViewer.showOrigin

Show origin of coordinate system.

showPlaneWaves

gui.designViewer.showPlaneWaves

Show all plane plane waves.

showSymmetryPlanes

gui.designViewer.showSymmetryPlanes

Show active symmetry planes.

showWorkingPlane

gui.designViewer.showWorkingPlane

Show working plane.

zoom

gui.designViewer.zoom(direction)

Perform zoom to the center of screen. Input direction can be numeric scalar. If is scalar
positive, zoom in is performed, if negative zoom out is performed.
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